Câu hỏi:

11/07/2024 7,626

Tìm giá trị nguyên dương của x để đa thức x3 – 3x2 – 3x – 1 chia hết cho đa thức x2 + x + 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Thực hiện phép chia đa thức như sau:

Tìm giá trị nguyên dương của x để đa thức x^3 - 3x^2 - 3x - 1 chia hết cho đa thức x^2 (ảnh 1)

Để đa thức x3 – 3x2 – 3x – 1 chia hết cho đa thức x2 + x + 1 thì 3 (x2 + x + 1).

Tức là x2 + x + 1 Ư(3) = {–3; 3; –1; 1}.

Do x > 0 nên x2 + x + 1 > 1

Do đó x2 + x + 1 = 3

           x2 + x – 2 = 0

           x2 – x + 2x – 2 = 0

          x(x – 1) + 2(x – 1) = 0

          (x – 1)(x + 2) = 0

Suy ra x = 1 (thỏa mãn) hoặc x = – 2 (loại).

Vậy x = 1 thì đa thức x3 – 3x2 – 3x – 1 chia hết cho đa thức x2 + x + 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A (AB < AC). So sánh các góc của tam giác ABC (ảnh 1)

Tam giác ABC là tam giác vuông tại A nên cạnh huyền BC là cạnh lớn nhất.

Mà AB < AC nên AB < AC < BC.

Suy ra \(\widehat C < \widehat B < \widehat A\) (quan hệ giữa góc và cạnh đối diện trong tam giác).

Lời giải

Gọi x, y, z lần lượt là số máy in của các phân xưởng thứ nhất, thứ hai, thứ ba.

Tổng số máy của ba phân xưởng là x + y + z = 47.

Vì số ngày hoàn thành công việc tỉ lệ nghịch với số máy nên ta có:

3x = 4y = 5z hay \(\frac{x}{{\frac{1}{3}}} = \frac{y}{{\frac{1}{4}}} = \frac{z}{{\frac{1}{5}}}\).

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{\frac{1}{3}}} = \frac{y}{{\frac{1}{4}}} = \frac{z}{{\frac{1}{5}}} = \frac{{x + y + z}}{{\frac{1}{3} + \frac{1}{4} + \frac{1}{5}}} = \frac{{47}}{{\frac{{47}}{{60}}}} = 60\)

Suy ra \(x = 60.\frac{1}{3} = 20;\) \(y = 60.\frac{1}{4} = 15;\) \(z = 60.\frac{1}{5} = 12\).

Vậy số máy in của ba phân xưởng lần lượt là 20; 15; 12 (máy in).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP