Câu hỏi:

11/07/2024 13,398

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm D sao cho BD = BA. Đường thẳng vuông góc với BC tại D cắt cạnh AC tại M, cắt tia BA tại N.

So sánh các góc của tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC). So sánh các góc của tam giác ABC (ảnh 1)

Tam giác ABC là tam giác vuông tại A nên cạnh huyền BC là cạnh lớn nhất.

Mà AB < AC nên AB < AC < BC.

Suy ra \(\widehat C < \widehat B < \widehat A\) (quan hệ giữa góc và cạnh đối diện trong tam giác).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y, z lần lượt là số máy in của các phân xưởng thứ nhất, thứ hai, thứ ba.

Tổng số máy của ba phân xưởng là x + y + z = 47.

Vì số ngày hoàn thành công việc tỉ lệ nghịch với số máy nên ta có:

3x = 4y = 5z hay \(\frac{x}{{\frac{1}{3}}} = \frac{y}{{\frac{1}{4}}} = \frac{z}{{\frac{1}{5}}}\).

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{{\frac{1}{3}}} = \frac{y}{{\frac{1}{4}}} = \frac{z}{{\frac{1}{5}}} = \frac{{x + y + z}}{{\frac{1}{3} + \frac{1}{4} + \frac{1}{5}}} = \frac{{47}}{{\frac{{47}}{{60}}}} = 60\)

Suy ra \(x = 60.\frac{1}{3} = 20;\) \(y = 60.\frac{1}{4} = 15;\) \(z = 60.\frac{1}{5} = 12\).

Vậy số máy in của ba phân xưởng lần lượt là 20; 15; 12 (máy in).

Lời giải

Gọi I là trung điểm của CN. Chứng minh ba điểm B, M, I thẳng hàng (ảnh 1)

Do DMNC cân tại M có I là trung điểm của NC nên MI là đường trung tuyến của DMNC.

Khi đó MI đồng thời là đường cao của DMNC hay MI NC (1)

Xét DBNC có hai đường cao CA, ND cắt nhau tại M nên M là trực tâm của DBNC.

Suy ra BM NC (2)

Từ (1) và (2) suy ra ba điểm B, M, I thẳng hàng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP