Câu hỏi:

13/07/2024 1,810

Cho n là số tự nhiên. Hãy tính tổng sau:

S = \(C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: S = \(C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n\)

Suy ra 2S = \[\left[ {C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n} \right]\] + \(\left[ {C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n} \right]\)

Lại có: \(C_n^k = C_n^{n - k}\) (tính chất tổ hợp).

Do đó, 2S = \[\left[ {C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n} \right]\] + \[\left[ {C_{2n + 1}^{2n + 1} + C_{2n + 1}^{2n} + C_{2n + 1}^{2n - 1} + ... + C_{2n + 1}^{n + 1}} \right]\]

2S = \[C_{2n + 1}^0 + C_{2n + 1}^1 + C_{2n + 1}^2 + ... + C_{2n + 1}^n\]\[ + C_{2n + 1}^{n + 1} + ... + C_{2n + 1}^{2n - 1} + C_{2n + 1}^{2n} + C_{2n + 1}^{2n + 1}\]

Xét khai triển (1 + x)2n + 1 = \[C_{2n + 1}^0{x^0} + C_{2n + 1}^1{x^1} + ... + C_{2n + 1}^{2n}{x^{2n}} + C_{2n + 1}^{2n + 1}{x^{2n + 1}}\].

Khi x = 1 2S = 22n + 1 S = 22n = 4n.

Vậy S = 4n.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 2), B(3; 1) và C(5; 4). Phương trình nào sau đây là phương trình đường cao kẻ từ A của tam giác ABC?

Xem đáp án » 21/12/2022 24,830

Câu 2:

Có bao nhiêu cách xếp 5 người ngồi vào một dãy ghế gồm có 6 chiếc ghế, biết mỗi người ngồi vào một ghế.

Xem đáp án » 21/12/2022 11,614

Câu 3:

Với n là số nguyên dương tùy ý lớn hơn 1, mệnh đề nào dưới đây đúng?

Xem đáp án » 21/12/2022 7,814

Câu 4:

Trong mặt phẳng tọa độ Oxy, cho vectơ \(\overrightarrow a = - 2\overrightarrow i + 3\overrightarrow j \). Tọa độ của vectơ \(\overrightarrow a \)

Xem đáp án » 21/12/2022 4,885

Câu 5:

Tọa độ giao điểm của hai đường thẳng x – 3y – 6 = 0 và 3x + 4y – 1 = 0 là

Xem đáp án » 21/12/2022 4,848

Câu 6:

Số hạng không chứa x trong khai triển nhị thức Newton của (2x – 5)5

Xem đáp án » 21/12/2022 2,983

Câu 7:

Cho đường thẳng ∆ đi qua điểm A(4; – 5) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {1;\,\,2} \right)\). Phương trình tham số của đường thẳng ∆ là

Xem đáp án » 21/12/2022 2,778

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store