Câu hỏi:

21/12/2022 6,506

Cho hai đường thẳng \({d_1}:\left\{ \begin{array}{l}x = 8 - \left( {m + 1} \right)t\\y = 10 + t\end{array} \right.\) và d2: mx + 2y – 14 = 0. Giá trị của m để hai đường thẳng trên song song với nhau là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: \({d_1}:\left\{ \begin{array}{l}x = 8 - \left( {m + 1} \right)t\\y = 10 + t\end{array} \right.\).

Từ đó suy ra, đường thẳng d1 đi qua điểm A(8; 10) và có một vectơ chỉ phương là \(\overrightarrow {{u_1}} = \left( { - m - 1;\,\,1} \right)\), do đó nó có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1;\,\,m + 1} \right)\).

Ta có: d2: mx + 2y – 14 = 0.

Từ đó suy ra đường thẳng d2 có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {m;\,\,2} \right)\).

\({d_1}\,{\rm{//}}\,{d_2} \Leftrightarrow \left\{ \begin{array}{l}A \notin {d_2}\\\left[ \begin{array}{l}m = 0 \to \left\{ \begin{array}{l}\overrightarrow {{n_1}} = \left( {1;\,\,1} \right)\\\overrightarrow {{n_2}} = \left( {0;\,\,2} \right)\end{array} \right.(ktm)\\m \ne 0 \to \frac{1}{m} = \frac{{m + 1}}{2}\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}8m + 6 \ne 0\\m \ne 0\\m\left( {m + 1} \right) = 2\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 2\end{array} \right.\).

Vậy m {– 2; 1} thì d1 // d2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \(\overrightarrow {BC} = \left( {2;\,\,3} \right)\).

Đường cao kẻ từ A của tam giác ABC nhận \(\overrightarrow {BC} \) làm vectơ pháp tuyến và đi qua điểm A nên có phương trình là: 2(x – 1) + 3(y – 2) = 0 hay 2x + 3y – 8 = 0.

Lời giải

Đáp án đúng là: D

Mỗi cách sắp xếp 5 người vào dãy 6 ghế là một chỉnh hợp chập 5 của 6. Do đó, có số cách sắp xếp là \(A_6^5 = 720\) cách.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP