Bộ ba số đo nào dưới đây có thể là độ dài ba cạnh của một tam giác?
Bộ ba số đo nào dưới đây có thể là độ dài ba cạnh của một tam giác?
A. 7 cm, 3 cm, 4 cm;
B. 7 cm, 3 cm, 5 cm;
C. 7 cm, 3 cm, 2 cm;
D. 7 cm, 3 cm, 3 cm.
Quảng cáo
Trả lời:
Đáp án đúng là: B
Trong một tam giác, tổng độ dài hai cạnh bất kì lớn hơn độ dài cạnh còn lại.
Ta thấy:
3 + 4 = 7 nên bộ ba số đo 7 cm, 3 cm, 4 cm không thể là ba cạnh của một tam giác.
3 + 5 > 7 nên bộ ba số đo 7 cm, 3 cm, 5 cm có thể là ba cạnh của một tam giác.
2 + 3 < 7 nên bộ ba số đo 7 cm, 3 cm, 2 cm không thể là ba cạnh của một tam giác.
3 + 3 < 7 nên bộ ba số đo 7 cm, 3 cm, 4 cm không thể là ba cạnh của một tam giác.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta thực hiện phép chia đa thức như sau:

Ta được thương của phép chia trên là x2 + x + a, dư (a – 1)x + b – a.
Để đa thức x4 + ax2 + b chia hết cho đa thức x2 – x + 1 thì dư phải bằng 0 với mọi x.
Do đó (a – 1)x + b – a = 0 với mọi x.
Suy ra \(\left\{ \begin{array}{l}a - 1 = 0\\b - a = 0\end{array} \right.\), tức là \(\left\{ \begin{array}{l}a = 1\\b = 1\end{array} \right.\).
Vậy a = b = 1.
Lời giải

• Do BA = BE nên B nằm trên đường trung trực của AE.
Do AD = ED nên D nằm trên đường trung trực của AE.
Suy ra BD là đường trung trực của AE.
• Do DABD = DEBD nên \(\widehat {BED} = \widehat {BAD} = 90^\circ \) (hai góc tương ứng)
Xét DDCE vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất.
Do đó DC > DE.
Mà AD = DE nên AD < DC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
