Câu hỏi:
11/07/2024 7,780Cho đường tròn (O; R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA, SB với đường tròn (A, B là các tiếp điểm). Một đường thẳng đi qua S (không đi qua tâm O) cắt đường tròn (O; R) tại hai điểm M và N với M nằm giữa S và N. Gọi H là giao điểm của SO và AB; I là trung điểm MN. Hai đường thẳng OI và AB cắt nhau tại E.
a) Chứng minh IHSE là tứ giác nội tiếp đường tròn.Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Chứng minh tứ giác IHSE nội tiếp trong một đường tròn :
Ta có SA = SB ( tính chất của tiếp tuyến)
Nên SAB cân tại S
Do đó tia phân giác SO cũng là đường cao => SOAB
I là trung điểm của MN nên OI MN
Do đó
=> Hai điểm H và I cùng nhìn đoạn SE dưới 1 góc vuông nên tứ giác IHSE nội tiếp đường tròn đường kính SECÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giải bài toán bằng cách lập phương trình :
Một xe khách và một xe du lịch khởi hành đồng thời từ A để đi đến B. Biết vận tốc của xe du lịch lớn hơn vận tốc xe khách là 20 km/h. Do đó đến B trước xe khách là 50 phút. Tính vận tốc mỗi xe, biết quãng đường AB dài 100 km.
Câu 4:
về câu hỏi!