Câu hỏi:

27/02/2023 4,094

Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Số vectơ bằng vectơ MN có điểm đầu và điểm cuối trùng với một trong các điểm A, B, C, M, N, P là bao nhiêu vectơ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do M và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác ABC.

Suy ra MN//AB;  MN=12AB.           (1)

Lại có P là trung điểm của AB nên: AP=BP=12AB.           (2)

Từ (1) và (2) suy ra: MN=AP=BP. 

Vậy khi đó số vecto bằng MNmà có điểm đầu và cuối trùng với các điểm trên là: BP;   PA.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi a là số trứng lành, b là số trứng hỏng trong giỏ A.

Gọi x là số trứng lành, y là số trứng hỏng trong giỏ B.

Lấy ngẫu nhiên mỗi giỏ 1 quả trứng thì khi đó xác suất để lấy được 2 quả trứng lành là: aa+b.xx+y=5584.

Do đó theo giả thiết bài toán ta có:

(a.x)  55(a+b)(x+y)  84a+b+x+y=20(a+b)(x+y)a+b+x+y22=100a+b=14x+y=6(a.x)  55a=11x=5.

Vậy giỏ A có 11 quả trứng lành.

Lời giải

Xét hàm số f(x) = x3 – 3x2 – 9x + m trên đoạn [– 2; 4].

Gọi S là tập hợp các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = |x^3 – 3x^2 – 9x + m| trên đoạn [– 2; 4] bằng 16. Số phần tử của S là:  A. 0;  B. 2; C. 4;  D. 1.  (ảnh 1)
 

Ta có: f(– 2) = m – 2, f(– 1) = m + 5, f(3) = m – 27, f(4) = m – 20.

Gọi S là tập hợp các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = |x^3 – 3x^2 – 9x + m| trên đoạn [– 2; 4] bằng 16. Số phần tử của S là:  A. 0;  B. 2; C. 4;  D. 1.  (ảnh 2)

Vậy S = {11}. Do đó S có 1 phần tử.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP