Gọi a, b, c lần lượt là ba cạnh của tam giác; ha, hb, hc lần lượt là các đường cao tương ứng với ba cạnh đó và r là bán kính đường tròn nội tiếp tam giác đó. Chứng minh rằng: \(\frac{1}{{{h_a}}} + \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}} = \frac{1}{r}\).
Gọi a, b, c lần lượt là ba cạnh của tam giác; ha, hb, hc lần lượt là các đường cao tương ứng với ba cạnh đó và r là bán kính đường tròn nội tiếp tam giác đó. Chứng minh rằng: \(\frac{1}{{{h_a}}} + \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}} = \frac{1}{r}\).
Quảng cáo
Trả lời:
Ta có:
\(S = \frac{1}{2}a.{h_a} \Rightarrow \frac{1}{{{h_a}}} = \frac{a}{{2S}}\);
\(S = \frac{1}{2}b.{h_b} \Rightarrow \frac{1}{{{h_b}}} = \frac{b}{{2S}}\);
\(S = \frac{1}{2}c.{h_c} \Rightarrow \frac{1}{{{h_c}}} = \frac{c}{{2S}}\).
Do đó: \(\frac{1}{{{h_a}}} + \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}} = \frac{{a + b + c}}{{2S}} = \frac{{2p}}{{2S}} = \frac{p}{S} = \frac{p}{{p.r}} = \frac{1}{r}\).
Hay \(\frac{1}{{{h_a}}} + \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}} = \frac{1}{r}\) (đpcm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
• TH1. Ông An đứng ở đầu hàng, bà An đứng ở cuối hàng và 6 người con đứng ở giữa.
Khi đó có tất cả 6! cách sắp xếp.
• TH2. Ông An đứng ở cuối, bà An đứng ở đầu hàng và 6 người con đứng ở giữa.
Khi đó có tất cả 6! cách sắp xếp.
Số cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng là:
2 . 6! = 2 . 720 = 1 440 (cách)
Vậy có 1 440 cách cần tìm.
Lời giải
Đáp án đúng là: A
Số học sinh trong lớp chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội) là:
25 + 24 – 10 = 39 (học sinh)
Vậy lớp có 39 học sinh chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.