Quảng cáo
Trả lời:
Ta có: x2 – 2y2 = 1 ⇔ x2 = 2y2 + 1; \({y^2} = \frac{{{x^2} - 1}}{2}\).
Suy ra x2 là một số chính phương lẻ, x là số lẻ.
Đặt x = 2k + 1 (k nguyên dương).
Ta có \({y^2} = \frac{{{{\left( {2k + 1} \right)}^2} - 1}}{2} = \frac{{4{k^2} + 4k}}{2} = 2k(k + 1)\) (*)
Y là một số nguyên tố nên y2 sẽ là một số nguyên dương mà có duy nhất 3 ước là {1; y; y2}.
Từ (*) dễ thấy \({y^2} \vdots 2\) và do y là số nguyên tố nên suy ra y = 2 \( \Rightarrow \)k = 1 \( \Rightarrow \) x = 3.
Vậy x = 3 và y = 2 thỏa mãn yêu cầu bài toán.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
• TH1. Ông An đứng ở đầu hàng, bà An đứng ở cuối hàng và 6 người con đứng ở giữa.
Khi đó có tất cả 6! cách sắp xếp.
• TH2. Ông An đứng ở cuối, bà An đứng ở đầu hàng và 6 người con đứng ở giữa.
Khi đó có tất cả 6! cách sắp xếp.
Số cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng là:
2 . 6! = 2 . 720 = 1 440 (cách)
Vậy có 1 440 cách cần tìm.
Lời giải
Đáp án đúng là: A
Số học sinh trong lớp chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội) là:
25 + 24 – 10 = 39 (học sinh)
Vậy lớp có 39 học sinh chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.