Cho x, y, z > 0 thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của
\(Q = \frac{x}{{x + \sqrt {x + yz} }} + \frac{y}{{y + \sqrt {y + zx} }} + \frac{z}{{z + \sqrt {z + xy} }}\).
Cho x, y, z > 0 thỏa mãn x + y + z = 1. Tìm giá trị lớn nhất của
\(Q = \frac{x}{{x + \sqrt {x + yz} }} + \frac{y}{{y + \sqrt {y + zx} }} + \frac{z}{{z + \sqrt {z + xy} }}\).
Quảng cáo
Trả lời:

Ta có: x + yz = x(x + y + z) + yz
= x2 + yz + x(y + z) = A
Áp dụng bất đẳng thức Cô-si ta có:
A \( \ge 2x\sqrt {yz} + x\left( {y + z} \right)\left( {{x^2} + yz \ge 2\sqrt {{x^2}yz} } \right)\)\( = x{\left( {\sqrt y + \sqrt z } \right)^2}\).
Hay \(x + yz \ge x{\left( {\sqrt y + \sqrt z } \right)^2}\).
Tương tự ta có: \(y + zx \ge y{\left( {\sqrt z + \sqrt x } \right)^2}\);
\(z + xy \ge z{\left( {\sqrt x + \sqrt y } \right)^2}\).
Khi đó ta có:
\(P \le \frac{x}{{x + \sqrt {x{{\left( {\sqrt y + \sqrt z } \right)}^2}} }} + \frac{y}{{y + \sqrt {y{{\left( {\sqrt z + \sqrt x } \right)}^2}} }} + \frac{z}{{z + \sqrt {z{{\left( {\sqrt x + \sqrt y } \right)}^2}} }}\)
\( = \frac{{\sqrt x }}{{\sqrt x + \sqrt y + \sqrt z }} + \frac{{\sqrt y }}{{\sqrt y + \sqrt z + \sqrt x }} + \frac{{\sqrt z }}{{\sqrt z + \sqrt x + \sqrt y }}\)
\( = \frac{{\sqrt x + \sqrt y + \sqrt z }}{{\sqrt x + \sqrt y + \sqrt z }} = 1\).
Vậy Pmax = 1 khi \(x = y = z = \frac{1}{3}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 720;
B. 1440;
C. 18 720;
D. 40 320.
Lời giải
Đáp án đúng là: B
• TH1. Ông An đứng ở đầu hàng, bà An đứng ở cuối hàng và 6 người con đứng ở giữa.
Khi đó có tất cả 6! cách sắp xếp.
• TH2. Ông An đứng ở cuối, bà An đứng ở đầu hàng và 6 người con đứng ở giữa.
Khi đó có tất cả 6! cách sắp xếp.
Số cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng là:
2 . 6! = 2 . 720 = 1 440 (cách)
Vậy có 1 440 cách cần tìm.
Lời giải
Với A = (m – 1; 4], B = (−2; 2m + 2) là các tập khác tập rỗng, ta có điều kiện:
\(\left\{ \begin{array}{l}m - 1 < 4\\2m + 2 > - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 5\\m > - 2\end{array} \right.\)⇔ −2 < m < 5 (*)
a) Ta có: A ∩ B = Ø ⇔ m – 1 < 2m + 2 ⇔ m > −3.
So sánh với điều kiện (*) ta thấy các giá trị m thỏa mãn yêu cầu là: −2 < m < 5.
b) A ⊂ B \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge - 2\\2m + 2 > 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ge - 1\\m > 1\end{array} \right. \Leftrightarrow m > 1\).
So sánh với điều kiện (*) ta có các giá trị thỏa mãn yêu cầu bài toán là: 1 < m < 5.
c) B ⊂ A \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \le - 2\\2m + 2 \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\m \le 1\end{array} \right. \Leftrightarrow m \le 1\).
So sánh với (*) ta thấy các giá trị m thỏa mãn yêu cầu bài toán là: −2 < m ≤ −1.
d) (A ∩ B) ⊂ (−1; 3) \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge - 1\\2m + 2 \le 3\end{array} \right. \Leftrightarrow 0 \le m \le \frac{1}{2}\) (*).
Vậy với \(0 \le m \le \frac{1}{2}\) thoản mãn yêu cầu bài toán.
Câu 3
A. 39;
B. 26;
C. 29;
D. 36.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{{115}}{{396}}\);
B. \(\frac{{18}}{{35}}\);
C. \(\frac{1}{{30}}\);
D. \(\frac{2}{{30}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.