Câu hỏi:

10/03/2023 1,844

Cho tam giác ABC có P là trung điểm của AB và hai điểm M, N thỏa các hệ thức: \(\overrightarrow {MB} - 2\overrightarrow {MC} = \overrightarrow 0 \)\(\overrightarrow {NA} + 2\overrightarrow {NC} = \overrightarrow 0 \). Chứng minh rằng 3 điểm M, N, P thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét \(\overrightarrow {MN} = \overrightarrow {MC} + \overrightarrow {CN} = \overrightarrow {CB} + \frac{1}{3}\overrightarrow {CA} \)

\( \Rightarrow 3\overrightarrow {MN} = 3\overrightarrow {CB} + \overrightarrow {CA} \) (1)

Xét \(\overrightarrow {MP} = \overrightarrow {MB} + \overrightarrow {BP} = 2\overrightarrow {CB} + \frac{1}{2}\overrightarrow {BA} \)

\( = 2\overrightarrow {CB} + \frac{1}{2}\left( {\overrightarrow {CA} - \overrightarrow {CB} } \right) = 2\overrightarrow {CB} + \frac{1}{2}\overrightarrow {CA} - \frac{1}{2}\overrightarrow {CB} \)

\( = \frac{3}{2}\overrightarrow {CB} + \frac{1}{2}\overrightarrow {CA} \)

\( \Rightarrow 2\overrightarrow {MP} = 3\overrightarrow {CB} + \overrightarrow {CA} \)

Từ (1) và (2) suy ra \(3\overrightarrow {MN} = 2\overrightarrow {MP} \Leftrightarrow \overrightarrow {MN} = \frac{2}{3}\overrightarrow {MP} \).

Từ đây ta có: \(\overrightarrow {MN} \) cùng phương với \(\overrightarrow {MP} \).

Do đó điểm M, N, P thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

• TH1. Ông An đứng ở đầu hàng, bà An đứng ở cuối hàng và 6 người con đứng ở giữa.

Khi đó có tất cả 6! cách sắp xếp.

• TH2. Ông An đứng ở cuối, bà An đứng ở đầu hàng và 6 người con đứng ở giữa.

Khi đó có tất cả 6! cách sắp xếp.

Số cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng là:

2 . 6! = 2 . 720 = 1 440 (cách)

Vậy có 1 440 cách cần tìm.

Lời giải

Đáp án đúng là: A

Số học sinh trong lớp chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội) là:

25 + 24 – 10 = 39 (học sinh)

Vậy lớp có 39 học sinh chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP