Câu hỏi:
10/03/2023 900Cho đồ thị hàm số y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình \(f(x) = \frac{1}{2}\) là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: A
Số nghiệm thực của phương trình \(f(x) = \frac{1}{2}\) chính là số giao điểm của đồ thị hàm số f(x) với đường thẳng \(y = \frac{1}{2}\).
Dựa vào hình trên ta thấy đồ thị hàm số f(x) với đường thẳng \(y = \frac{1}{2}\) có hai giao điểm.
Vậy phương trình f(x) = \(\frac{1}{2}\) có hai nghiệm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ông và bà An cùng có 6 đứa con đang lên máy bay theo một hàng dọc. Có bao nhiêu cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng.
Câu 2:
Một lớp học có 25 học sinh học khá các môn tự nhiên, 24 học sinh học khá các môn xã hội, 10 học sinh học khá cả môn tự nhiên lẫn môn xã hội, đặc biệt vẫn còn 3 học sinh chưa học khá cả hai nhóm môn ấy. Hỏi lớp có bao nhiêu học sinh chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội).
Câu 3:
Một bó hoa 12 bông gồm: 5 hoa hồng, 4 hoa lan còn lại là hoa cúc. Chọn ngẫu nhiên 5 bông hoa. Tính xác suất sao cho chọn đủ ba loại và số cúc không ít hơn 2.
Câu 5:
Cho hai tập hợp khác rỗng: A = (m – 1; 4], B = (−2; 2m + 2), với m ∈ ℝ. Xác định m để:
a) A ∩ B = Ø;
b) A ⊂ B;
c) B ⊂ A;
d) (A ∩ B) ⊂ (−1; 3).
về câu hỏi!