Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh ấy những đoạn thẳng tương ứng tỉ lệ.
|
GT |
\(\Delta ABC\), B’C’ // BC (B’ ∈ AB, C’ ∈ AC). |
|
KL |
\(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}}\); \(\frac{{AB'}}{{B'B}} = \frac{{AC'}}{{C'C}}\); \(\frac{{B'B}}{{AB}} = \frac{{C'C}}{{AC}}\). |
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Công thức tính diện tích tam giác đều cạnh a là: \(S = {a^2}\frac{{\sqrt 3 }}{4}\).
Trong đó: S là diện tích tam giác đều; a là độ dài cạnh của tam giác.
Lời giải
Với A = (m – 1; 4], B = (−2; 2m + 2) là các tập khác tập rỗng, ta có điều kiện:
\(\left\{ \begin{array}{l}m - 1 < 4\\2m + 2 > - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 5\\m > - 2\end{array} \right.\)⇔ −2 < m < 5 (*)
a) Ta có: A ∩ B = Ø ⇔ m – 1 < 2m + 2 ⇔ m > −3.
So sánh với điều kiện (*) ta thấy các giá trị m thỏa mãn yêu cầu là: −2 < m < 5.
b) A ⊂ B \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge - 2\\2m + 2 > 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ge - 1\\m > 1\end{array} \right. \Leftrightarrow m > 1\).
So sánh với điều kiện (*) ta có các giá trị thỏa mãn yêu cầu bài toán là: 1 < m < 5.
c) B ⊂ A \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \le - 2\\2m + 2 \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\m \le 1\end{array} \right. \Leftrightarrow m \le 1\).
So sánh với (*) ta thấy các giá trị m thỏa mãn yêu cầu bài toán là: −2 < m ≤ −1.
d) (A ∩ B) ⊂ (−1; 3) \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge - 1\\2m + 2 \le 3\end{array} \right. \Leftrightarrow 0 \le m \le \frac{1}{2}\) (*).
Vậy với \(0 \le m \le \frac{1}{2}\) thoản mãn yêu cầu bài toán.
Câu 3
A. 720;
B. 1440;
C. 18 720;
D. 40 320.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 39;
B. 26;
C. 29;
D. 36.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.