Cho hàm số bậc nhất y = (2m – 1)x + m – 1 (d). Tìm m để khoảng cách từ O(0; 0) đến (d) là \(\sqrt 3 \).
Cho hàm số bậc nhất y = (2m – 1)x + m – 1 (d). Tìm m để khoảng cách từ O(0; 0) đến (d) là \(\sqrt 3 \).
Quảng cáo
Trả lời:

Ta có y = (2m – 1)x + m – 1 (d).
Điều kiện 2m – 1 ≠ 0 \(m \ne \frac{1}{2}\).
Gọi A là giao điểm của (d) và Ox \( \Rightarrow A\left( {\frac{{ - m + 1}}{{2m - 1}};0} \right)\).
Gọi B là giao điểm của (d) và Oy nên B(0; m – 1).
Gọi H là chân đường cao kẻ từ O xuống (d).
Để khoảng cách từ O đến (d) bằng \(\sqrt 3 \) thì \(OH = \sqrt 3 \).
Khi đó \(OA = \left| {\frac{{ - m + 1}}{{2m - 1}}} \right|\); OB = |m – 1|.
Xét \(\Delta \)OAB vuông tại O, đường cao AH có:
\(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}}\)
\( \Leftrightarrow \frac{1}{3} = \frac{1}{{{{\left( {\frac{{ - m + 1}}{{2m - 1}}} \right)}^2}}} + \frac{1}{{{{\left( {m - 1} \right)}^2}}}\) (điều kiện: m ≠ 1).
\( \Leftrightarrow \frac{1}{3} = \frac{{{{\left( {2m - 1} \right)}^2}}}{{{{\left( {m - 1} \right)}^2}}} + \frac{1}{{{{\left( {m - 1} \right)}^2}}}\)
\( \Leftrightarrow \frac{1}{3} = \frac{{4{m^2} - 4m + 1 + 1}}{{{m^2} - 2m + 1}}\)
⇔ m2 – 2m + 1 = 12m2 – 12m + 6
⇔ 11m2 – 10m + 5 = 0
⇔ \(11\left( {{m^2} - 2\frac{5}{{11}}m + \frac{{25}}{{121}}} \right) = \frac{{30}}{{11}} = 0\)
\[ \Leftrightarrow 11{\left( {m - \frac{5}{{11}}} \right)^2} + \frac{{30}}{{11}} = 0\] (vô nghiệm).
Vậy không có giá trị nào của m thỏa mãn khoảng cách từ O đến (d) bằng \(\sqrt 3 \).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
• TH1. Ông An đứng ở đầu hàng, bà An đứng ở cuối hàng và 6 người con đứng ở giữa.
Khi đó có tất cả 6! cách sắp xếp.
• TH2. Ông An đứng ở cuối, bà An đứng ở đầu hàng và 6 người con đứng ở giữa.
Khi đó có tất cả 6! cách sắp xếp.
Số cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng là:
2 . 6! = 2 . 720 = 1 440 (cách)
Vậy có 1 440 cách cần tìm.
Lời giải
Đáp án đúng là: A
Số học sinh trong lớp chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội) là:
25 + 24 – 10 = 39 (học sinh)
Vậy lớp có 39 học sinh chỉ khá đúng một nhóm môn (tự nhiên hoặc xã hội).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.