Câu hỏi:

10/03/2023 1,848 Lưu

Người ta muốn xây một cái bể chứa nước dạng khối hộp chữ nhật không nắp có thể tích \(\frac{{500}}{3}\) m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500 000 đồng/m3. Nếu biết xác định kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất, chi phí thấp nhất đó là:

A. 70 triệu đồng;

B. 85 triệu đồng;

C. 80 triệu đồng;

D. 75 triệu đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Gọi các yếu tố như hình vẽ, diện tích phần phải xây của bể là phần xung quanh và đáy.

\(\left\{ \begin{array}{l}V = 2{x^3}.h = \frac{{500}}{3}\\S = 2{x^2} + 6xh\end{array} \right.\)

\( \Rightarrow S = 2{x^2} + \frac{{500}}{x} = 2{x^2} + \frac{{250}}{x} + \frac{{250}}{x}\)

Áp dụng bất đẳng thức Cô-si ta có:

S ≥ \(3.\sqrt[3]{{2{x^2}.\frac{{250}}{x}.\frac{{250}}{x}}} = 3.50 = 150\)

Vậy số chi phí thấp nhất là: 150 . 500 000 = 75 000 000 (đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

• TH1. Ông An đứng ở đầu hàng, bà An đứng ở cuối hàng và 6 người con đứng ở giữa.

Khi đó có tất cả 6! cách sắp xếp.

• TH2. Ông An đứng ở cuối, bà An đứng ở đầu hàng và 6 người con đứng ở giữa.

Khi đó có tất cả 6! cách sắp xếp.

Số cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng là:

2 . 6! = 2 . 720 = 1 440 (cách)

Vậy có 1 440 cách cần tìm.

Lời giải

Với A = (m – 1; 4], B = (−2; 2m + 2) là các tập khác tập rỗng, ta có điều kiện:

\(\left\{ \begin{array}{l}m - 1 < 4\\2m + 2 > - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 5\\m > - 2\end{array} \right.\) −2 < m < 5 (*)

a) Ta có: A ∩ B = Ø m – 1 < 2m + 2 m > −3.

So sánh với điều kiện (*) ta thấy các giá trị m thỏa mãn yêu cầu là: −2 < m < 5.

b) A B \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge - 2\\2m + 2 > 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ge - 1\\m > 1\end{array} \right. \Leftrightarrow m > 1\).

So sánh với điều kiện (*) ta có các giá trị thỏa mãn yêu cầu bài toán là: 1 < m < 5.

c) B A \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \le - 2\\2m + 2 \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\m \le 1\end{array} \right. \Leftrightarrow m \le 1\).

So sánh với (*) ta thấy các giá trị m thỏa mãn yêu cầu bài toán là: −2 < m ≤ −1.

d) (A ∩ B) (−1; 3) \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge - 1\\2m + 2 \le 3\end{array} \right. \Leftrightarrow 0 \le m \le \frac{1}{2}\) (*).

Vậy với \(0 \le m \le \frac{1}{2}\) thoản mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP