Câu hỏi:

19/08/2025 371 Lưu

Tìm giá trị lớn nhất của biểu thức \(A = 11 - \sqrt {{x^2} + 7x + 4} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(A = 11 - \sqrt {{{\left( {x + \frac{7}{2}} \right)}^2} - \frac{{25}}{4}} \le 11\) ( do \(\sqrt {{{\left( {x + \frac{7}{2}} \right)}^2} - \frac{{25}}{4}} \ge 0\))

Đẳng thức xảy ra khi \({\left( {x + \frac{7}{2}} \right)^2} = \frac{{25}}{4} \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 6\end{array} \right.\)

Vậy Amax = 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

• TH1. Ông An đứng ở đầu hàng, bà An đứng ở cuối hàng và 6 người con đứng ở giữa.

Khi đó có tất cả 6! cách sắp xếp.

• TH2. Ông An đứng ở cuối, bà An đứng ở đầu hàng và 6 người con đứng ở giữa.

Khi đó có tất cả 6! cách sắp xếp.

Số cách xếp hàng khác nhau nếu ông hay bà An đứng ở đầu hoặc cuối hàng là:

2 . 6! = 2 . 720 = 1 440 (cách)

Vậy có 1 440 cách cần tìm.

Lời giải

Với A = (m – 1; 4], B = (−2; 2m + 2) là các tập khác tập rỗng, ta có điều kiện:

\(\left\{ \begin{array}{l}m - 1 < 4\\2m + 2 > - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m < 5\\m > - 2\end{array} \right.\) −2 < m < 5 (*)

a) Ta có: A ∩ B = Ø m – 1 < 2m + 2 m > −3.

So sánh với điều kiện (*) ta thấy các giá trị m thỏa mãn yêu cầu là: −2 < m < 5.

b) A B \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge - 2\\2m + 2 > 4\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}m \ge - 1\\m > 1\end{array} \right. \Leftrightarrow m > 1\).

So sánh với điều kiện (*) ta có các giá trị thỏa mãn yêu cầu bài toán là: 1 < m < 5.

c) B A \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \le - 2\\2m + 2 \ge 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m \le - 1\\m \le 1\end{array} \right. \Leftrightarrow m \le 1\).

So sánh với (*) ta thấy các giá trị m thỏa mãn yêu cầu bài toán là: −2 < m ≤ −1.

d) (A ∩ B) (−1; 3) \( \Leftrightarrow \left\{ \begin{array}{l}m - 1 \ge - 1\\2m + 2 \le 3\end{array} \right. \Leftrightarrow 0 \le m \le \frac{1}{2}\) (*).

Vậy với \(0 \le m \le \frac{1}{2}\) thoản mãn yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP