Câu hỏi:
13/07/2024 1,988
Cho mạch điện: U = 16V , R0 =4 Ω , R1 = 12 Ω, Rx là giá trị tức thời của một biến trở đủ lớn, ampe kế A và dây nối có điện trở không đáng kể.
1. Tính Rx sao cho công suất tiêu thụ trên nó bằng 9 W và tính hiệu suất của mạch điện. Biết rằng tiêu hao năng lượng trên R1, Rx là có ích, trên R0 là vô ích.
2. Với giá trị nào của Rx thì công suất tiêu thụ trên nó là cực đại? Tính công suất ấy?

Cho mạch điện: U = 16V , R0 =4 Ω , R1 = 12 Ω, Rx là giá trị tức thời của một biến trở đủ lớn, ampe kế A và dây nối có điện trở không đáng kể.
1. Tính Rx sao cho công suất tiêu thụ trên nó bằng 9 W và tính hiệu suất của mạch điện. Biết rằng tiêu hao năng lượng trên R1, Rx là có ích, trên R0 là vô ích.
2. Với giá trị nào của Rx thì công suất tiêu thụ trên nó là cực đại? Tính công suất ấy?
Câu hỏi trong đề: 2020 câu Trắc nghiệm tổng hợp Vật lí 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Mạch: \({R_0}nt\left( {{R_1}//R{}_x} \right)\)
Đặt Rx = x \(\left( \Omega \right)\)
\({R_{td}} = {R_0} + \frac{{{R_1}.x}}{{{R_1} + x}} = 4 + \frac{{12x}}{{12 + x}} = \frac{{16x + 48}}{{12 + x}}\)
\( \Rightarrow I = \frac{U}{{{R_{td}}}} = \frac{{16}}{{\frac{{16x + 48}}{{12 + x}}}} = \frac{{12 + x}}{{x + 3}}\)
\({U_{Rx}} = U{}_{R1} = U{}_{R1x} = \frac{{12 + x}}{{x + 3}}.\frac{{12x}}{{12 + x}} = \frac{{12x}}{{x + 3}}\)
Mà \(P = \frac{{U_{Rx}^2}}{{{R_x}}} = 9W \Leftrightarrow \frac{{\frac{{144{x^2}}}{{{{\left( {x + 3} \right)}^2}}}}}{x} = 9 \Rightarrow 9{x^2} - 90x + 81 = 0\)
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 \Rightarrow {R_x} = 1\left( \Omega \right)}\\{x = 9 \Rightarrow {R_x} = 9\left( \Omega \right)}\end{array}} \right.\)
Hiệu suất của mạch điện
\(H = \frac{{{P_{1x}}}}{P}.100\% = \frac{{{I^2}.{R_{1x}}}}{{{I^2}.{R_{td}}}}.100\% = \frac{{{R_{1x}}}}{{{R_{td}}}}.100\% = \frac{{3{R_x}}}{{4{R_x} + 12}}.100\% \)
+ Rx = 1\(\left( \Omega \right)\) \( \Rightarrow H = 18,75\% \)
+ Rx = 9\(\left( \Omega \right)\) \( \Rightarrow H = 56,25\% \)
b. Từ câu a
\( \Rightarrow {P_{{R_x}}} = \frac{{{U^2}}}{{{R_x}}} = \frac{{{{\left( {\frac{{12x}}{{x + 3}}} \right)}^2}}}{x} = \frac{{144x}}{{{x^2} + 6x + 9}} = \frac{{144}}{{x + \frac{9}{x} + 6}}\)
Để PRx max khi \((x + \frac{9}{x} + 6)\,\,\min \)\( \Rightarrow \left( {x + \frac{9}{x}} \right)\,\,\min \)
Áp dụng BĐT Cô – si: \(x + \frac{9}{x} \ge 2\sqrt {x.\frac{9}{x}} = 6\)
\( \Rightarrow {P_{Rx\,max}} = \frac{{144}}{{6 + 6}} = 12\,\left( W \right)\)Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng: D
Hai nguồn sóng giống nhau tức là có độ lệch pha △φ = 0.
Biên độ sóng tại N là
\({A_N} = 2a\left| {cos\left( {\pi \frac{{NB - NA}}{\lambda }} \right)} \right| = 2a\left| {cos\left( {\pi \frac{{10 - 25}}{{10}}} \right)} \right| = 2a\left| {cos\frac{{\left( { - 3\pi } \right)}}{2}} \right| = 0\)
Lời giải
Lời giải
Đáp án đúng: B
Gọi v13 là vận tốc của ca nô so với bờ sông, v23 là vận tốc của nước so với bờ, v12 là vận tốc của ca nô so với dòng nước.
Đổi v = 18 km/h = 5 m/s
Ca nô sẽ đi theo hướng Đông Nam so với bờ sông với vận tốc tối đa nó có thể đạt được là: \({v_{13}} = \sqrt {{v_{12}}^2 + v_{23}^2} = \sqrt {{5^2} + {5^2}} = 5\sqrt 2 \)(m/s)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.