Câu hỏi:

04/04/2023 16,463

Một vật khối lượng m = 1 kg được kéo chuyển động ngang bởi một lực \(\vec F\) hợp với phương ngang một góc \(\alpha \)= 30° và có độ lớn F = 2 N. Biết khi bắt đầu chuyển động được 2 s vật đi được quãng đường 1,66 m. Cho g = 10 m/s2, \(\sqrt 3 = 1,73\).

a, Tính hệ số ma sát trượt giữa vật và mặt sàn.

b, Tính hệ số ma sát với lực kéo nói trên vật chuyển động thẳng đều.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Chọn hệ trục Oxy như hình vẽ.

Vật chịu tác dụng của các lực \(\vec F,\,{\vec F_{ms}},\vec N,\,\vec P\)

Theo định luật II Newton, ta có: \(\vec F + {\vec F_{ms}} + \vec N + \vec P = m.\vec a\)

Chiếu lần lượt lên Ox, Oy, ta được:

\(\left\{ {\begin{array}{*{20}{c}}{{F_x} - {F_{ms}} = m.a \Rightarrow {F_x} - \mu .N = m.a\,(1)}\\{{F_y} + N - P = 0 \Rightarrow N = P - F{}_y\,(2)}\end{array}} \right.\)

Thay (2) vào (1), được:

\(F.cos{30^0} - \mu \left( {P - F.\sin {{30}^0}} \right) = m.a\,\,\left( 3 \right)\)

Lại có: \(s = {v_0}.t + \frac{1}{2}a.{t^2} \Rightarrow a = \frac{{2s}}{{{t^2}}} = \frac{{2.1,66}}{{{2^2}}} = 0,83\,m/{s^2}\)

Thay vào (3) \( \Rightarrow \mu = \frac{{F.cos{{30}^0} - m.a}}{{P - F.\sin {{30}^0}}} = \frac{{2.\frac{{\sqrt 3 }}{2} - 1.0,83}}{{1.10 - 2.0,5}} \approx 0,1\)

b. Khi vật chuyển động thẳng đều thì a = 0

\( \Rightarrow \mu = \frac{{F.cos{{30}^0} - m.a}}{{P - F.\sin {{30}^0}}} = \frac{{2.\frac{{\sqrt 3 }}{2} - 1.0}}{{1.10 - 2.0,5}} \approx 0,192\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng: D

Hai nguồn sóng giống nhau tức là có độ lệch pha φ = 0.

Biên độ sóng tại N là

\({A_N} = 2a\left| {cos\left( {\pi \frac{{NB - NA}}{\lambda }} \right)} \right| = 2a\left| {cos\left( {\pi \frac{{10 - 25}}{{10}}} \right)} \right| = 2a\left| {cos\frac{{\left( { - 3\pi } \right)}}{2}} \right| = 0\)

Lời giải

Lời giải

Đáp án đúng: B

Gọi v13 là vận tốc của ca nô so với bờ sông, v23 là vận tốc của nước so với bờ, v12 là vận tốc của ca nô so với dòng nước.

Đổi v = 18 km/h = 5 m/s

Ca nô sẽ đi theo hướng Đông Nam so với bờ sông với vận tốc tối đa nó có thể đạt được là: \({v_{13}} = \sqrt {{v_{12}}^2 + v_{23}^2} = \sqrt {{5^2} + {5^2}} = 5\sqrt 2 \)(m/s)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP