Câu hỏi:

04/04/2023 2,401

Một người dự định đi bộ một quãng đường với vận tốc không đổi 5 km/h nhưng đi đến đúng nửa đường thì nhờ được bạn đèo xe đạp đi tiếp với vận tốc không đổi 12 km/h, do đó đến sớm dự định 28 phút. Hỏi thời gian dự định đi lúc đầu là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Gọi s1, t1 là quãng đường, thời gian người đi bộ, s2, t2 là quãng đường, thời gian đi xe đạp; s là tổng quãng đường người phải đi.

Đổi 28 phút = \(\frac{7}{{15}}\,(h)\)

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{{s_1} = {s_2} \Rightarrow 5{t_1} = 12{t_2} \Rightarrow {t_2} = \frac{5}{{12}}{t_1}}\\{{s_1} + {s_2} = s \Rightarrow 5{t_1} + 12{t_2} = 5({t_1} + {t_2} + \frac{7}{{15}})}\end{array}} \right.\)

\( \Rightarrow {t_1} = \frac{4}{5}\,(h) \Rightarrow {t_2} = \frac{5}{{12}}.\frac{4}{5} = \frac{1}{3}(h)\)

Thời gian dự định đi lúc đầu là

t = t1 + t2 + \(\frac{7}{{15}}\,\)= \(\frac{4}{5} + \frac{1}{3} + \frac{7}{{15}} = \frac{8}{5}\,(h) \approx 1,6\,(h)\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Đáp án đúng: D

Hai nguồn sóng giống nhau tức là có độ lệch pha φ = 0.

Biên độ sóng tại N là

\({A_N} = 2a\left| {cos\left( {\pi \frac{{NB - NA}}{\lambda }} \right)} \right| = 2a\left| {cos\left( {\pi \frac{{10 - 25}}{{10}}} \right)} \right| = 2a\left| {cos\frac{{\left( { - 3\pi } \right)}}{2}} \right| = 0\)

Lời giải

Lời giải

Đáp án đúng: B

Gọi v13 là vận tốc của ca nô so với bờ sông, v23 là vận tốc của nước so với bờ, v12 là vận tốc của ca nô so với dòng nước.

Đổi v = 18 km/h = 5 m/s

Ca nô sẽ đi theo hướng Đông Nam so với bờ sông với vận tốc tối đa nó có thể đạt được là: \({v_{13}} = \sqrt {{v_{12}}^2 + v_{23}^2} = \sqrt {{5^2} + {5^2}} = 5\sqrt 2 \)(m/s)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP