Câu hỏi:

11/04/2023 331 Lưu

Một con lắc lò xo treo thẳng đứng. Từ vị trí cân bằng kéo vật xuống dưới theo trục của lò xo đến vị trí lò xo dãn 12 cm thì thả nhẹ cho nó dao động điều hòa. Sau khoảng thời gian ngắn nhất là \[\frac{1}{{15}}s\] thì độ lớn gia tốc của vật bằng 0,5 độ lớn gia tốc ban đầu. Lấy gia tốc trọng trường \[g = {\pi ^2}m/{s^2}\]. Thời gian mà lò xo bị dãn trong một chu kì là

A. \[\frac{4}{{15}}s\]
B. \[\frac{1}{{15}}s\]
C. \[\frac{2}{{15}}s\]     

D. \[\frac{1}{5}s\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\[\omega = \frac{\alpha }{{\Delta t}} = \frac{\pi }{{3.\frac{1}{{15}}}} = 5\pi \;rad/s = > T = 0,4s\].   \[\Delta {\ell _0} = \frac{g}{{{\omega ^2}}} = \frac{{{\pi ^2}}}{{{{(5\pi )}^2}}} = \;\frac{1}{{25}}m = 4cm.\].

\[A = \Delta {\ell _{\max }} - \Delta {\ell _0} = 12 - 4 = 8\;cm\].

\[\Delta {t_{dan}} = T - \Delta {t_{nen}} = T - \frac{{2\arccos \frac{{\Delta {\ell _0}}}{A}}}{\omega } = 0,4 - \frac{{2\arccos \frac{4}{8}}}{{5\pi }} = \frac{4}{{15}}s.\]. Chọn A

Cách 2: Bảng giải nhanh:

\[\frac{{\Delta {\ell _0}}}{A} = \frac{4}{8} = \frac{1}{2}.\]=>\[\Delta {\ell _0} = \frac{A}{2}\]

\[\cos {\alpha _{nen}} = \frac{1}{2}.\]

\[2{\alpha _{nen}} = \frac{{2\pi }}{3}\]

\[\Delta {t_{nen}} = \frac{T}{3}\];\[\Delta {t_{gian}} = \frac{{2T}}{3}\]

\[\frac{{\Delta {t_{gian}}}}{{\Delta {t_{nen}}}} = 2\]

    \[\Delta {t_{dan}} = \frac{{2T}}{3} = \frac{{2.0,4}}{3} = \frac{4}{{15}}s.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tần số dao động của vật bằng với tần số của ngoại lực tác dụng lên vật và bằng f. Nên chu kỳ dao động của vật là \[T = \frac{1}{f}\].

\( \Rightarrow \) Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP