Câu hỏi:

11/04/2023 503 Lưu

Đoạn mạch \[AB\] không phân nhánh gồm điện trở thuần R. cuộn thuần cảm có độ tự cảm L và tụ điện có điện dung C. Khi đặt vào hai dầu đoạn mạch AB điện áp \[{\user2{u}_\user2{1}}\user2{ = U}\sqrt 2 \;\user2{cos(50\pi t)(V)}\] thì công suất tiêu thụ của đoạn mạch là \[{P_1}\] vả hệ số công suất là \[{k_1}\]. Khi đặt vào hai đầu đoạn mạch \[AB\] điện áp \[{\user2{u}_2}\user2{ = 2U}\sqrt 2 \;\user2{cos(100\pi t)(V)}\] thì công suất tiêu thụ của đoạn mạch là \[{P_2} = 4{P_1}\] . Khi đặt vào hai đầu đoạn mạch \[AB\] điện áp \[{\user2{u}_3}\user2{ = 3U}\sqrt 2 \,\user2{cos(150\pi t)(V)}\] thì công suất tiêu thụ cùa đoạn mạch là \[{P_3} = \frac{{81}}{{13}}{P_1},\]và hệ số công suất là \[{k_3}\]. Giá trị\[{k_1}\];\[{k_3}\]gần bằng

A. 0,95;0,89.
B. 0,95; 0,79.
C. 0.60; 0,95.

D. 0.5; 0,79.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn: Dùng chuẩn hóa.

ω (rad/s)

ZL

(chuẩn hóa)

ZC

Công suất:

\[P = \frac{{{U^2}.R}}{{{R^2} + {{({Z_L} - {Z_C})}^2}}}\]

Hệ số công suất:

\[\user2{cos\varphi = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (}{\user2{Z}_L}\user2{ - Z}_C^{}{\user2{)}^2}} }}\]

50π

1

x

\[{P_1} = \frac{{{U^2}.R}}{{{R^2} + {{(1 - x)}^2}}}.\]

\[\user2{cos}{\user2{\varphi }_1}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (1 - x}{\user2{)}^2}} }}\]

100π

2

x/2

\[{P_2} = \frac{{{{(2U)}^2}.R}}{{{R^2} + {{(2 - \frac{x}{2})}^2}}}.\]

\[\user2{cos}{\user2{\varphi }_2}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (2 - x/2}{\user2{)}^2}} }}\]

150π

3

x/3

\[{P_3} = \frac{{{{(3U)}^2}.R}}{{{R^2} + {{(3 - \frac{x}{3})}^2}}}.\]

\[\user2{cos}{\user2{\varphi }_3}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (3 - x/3}{\user2{)}^2}} }}\]

Khi: ω =50π rad/s: \[{P_1} = \frac{{{U^2}.R}}{{{R^2} + {{({Z_{L1}} - {Z_{C1}})}^2}}} = \frac{{{U^2}.R}}{{{R^2} + {{(1 - x)}^2}}}\];

 Khi: ω =10 rad/s: \[{P_2} = \frac{{{{(2U)}^2}.R}}{{{R^2} + {{({Z_{L2}} - {Z_{C2}})}^2}}} = \frac{{{{(2U)}^2}.R}}{{{R^2} + {{(2 - \frac{x}{2})}^2}}} = 4{P_1} = 4\frac{{{U^2}.R}}{{{R^2} + {{(1 - x)}^2}}}.\]

=> \[\begin{array}{l}{(1 - x)^2} = {(2 - \frac{x}{2})^2} \Leftrightarrow 1 - 2{\rm{x}} + {x^2} = 4 - 2{\rm{x + }}\frac{{{x^2}}}{4} = > \frac{{3{x^2}}}{4} = 3 = > x = 2.\\\end{array}\]

 Khi: ω =150π rad/s: \[{P_3} = \frac{{{{(3U)}^2}.R}}{{{R^2} + {{({Z_{L3}} - {Z_{C3}})}^2}}} = \frac{{{{(3U)}^2}.R}}{{{R^2} + {{(3 - \frac{x}{3})}^2}}} = \frac{{81}}{{13}}{P_1} = \frac{{81}}{{13}}.\frac{{{U^2}.R}}{{{R^2} + {{(1 - x)}^2}}}.\]

\[\begin{array}{l}13{R^2} + 13{(1 - x)^2} = 9({R^2} + {(3 - \frac{x}{3})^2}) \Rightarrow 4{R^2} + 13 - 26{\rm{x}} + 13{x^2} = 81 - 18{\rm{x + }}{x^2}\\ \Leftrightarrow 4{R^2} = - 12{x^2} + 8x + 68 = > {R^2} = - 3{x^2} + 2x + 17\\x = 2 = > R = 3\end{array}\]

\[{\user2{k}_\user2{1}}\user2{ = cos}{\user2{\varphi }_1}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (1 - x}{\user2{)}^2}} }}\user2{ = }\frac{3}{{\sqrt {{3^\user2{2}}\user2{ + (1 - 2}{\user2{)}^\user2{2}}} }}\user2{ = }\frac{3}{{\sqrt {10} }}\user2{ = 0,94886}\user2{.}\]

\[{\user2{k}_3}\user2{ = cos}{\user2{\varphi }_3}\user2{ = }\frac{\user2{R}}{{\sqrt {{\user2{R}^\user2{2}}\user2{ + (3 - x/3}{\user2{)}^2}} }}\user2{ = }\frac{3}{{\sqrt {{3^\user2{2}}\user2{ + (3 - 2/3}{\user2{)}^\user2{2}}} }}\user2{ = 0,78935}\user2{.}\] Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tần số dao động của vật bằng với tần số của ngoại lực tác dụng lên vật và bằng f. Nên chu kỳ dao động của vật là \[T = \frac{1}{f}\].

\( \Rightarrow \) Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP