Câu hỏi:
11/04/2023 602Cho cơ hệ như hình vẽ: lò xo rất nhẹ có độ cứng 100 N/m nối với vật m có khối lượng 1 kg , sợi dây rất nhẹ có chiều dài 2,5 cm và không giãn, một đầu sợi dây nối với lò xo, đầu còn lại nối với giá treo cố định. Vật m được đặt trên giá đỡ D và lò xo không biến dạng, lò xo luôn có phương thẳng đứng, đầu trên của lò xo lúc đầu sát với giá treo. Cho giá đỡ D bắt đầu chuyển động thẳng đứng xuống dưới nhanh dần đều với gia tốc có độ lớn là 5 m/s2. Bỏ qua mọi lực cản, lấy g = 10 m/s2. Xác định thời gian ngắn nhất từ khi m rời giá đỡ D cho đến khi vật m trở lại vị trí lò xo không biến dạng lần thứ nhất.

Câu hỏi trong đề: (2023) Đề thi thử Vật Lí THPT Trần Cao Vân có đáp án !!
Quảng cáo
Trả lời:
c


Giả sử m bắt đầu rời khỏi giá đỡ D khi lò xo dãn 1 đoạn là Δl,
Tại vị trí này ta có \(mg - k\Delta \ell = ma = > \Delta \ell = \frac{{m(g - a)}}{k} = 5(cm)\)
Lúc này vật đã đi được quãng đường S = 2,5+5=7,5(cm)
Mặt khác quãng đường \(S = \frac{{a.{t^2}}}{2} = > t = \sqrt {\frac{{2S}}{a}} = \,\sqrt {\frac{{2.7,5}}{{500}}} = \frac{{\sqrt 3 }}{{10}}(s)\)
Tại vị trí này vận tốc của vật là: v=a.t = \[50\sqrt 3 \] (cm/s)
Độ biến dạng của lò xo khi vật ở vị trí cân bằng là:
\(\Delta {\ell _0} = \frac{{m.g}}{k} = > \Delta {\ell _0} = 10(cm)\)
=> li độ của m tại vị trí rời giá đỡ
x = - 5(cm).
Tần số góc dao động :
\(\omega = \sqrt {\frac{k}{m}} = \sqrt {\frac{{100}}{1}} = 10rad/s.\)
Biên độ dao động
của vật m ngay khi rời giá D là:
\(A = \sqrt {{x^2} + \frac{{{v^2}}}{{{\omega ^2}}}} = \sqrt {{5^2} + {{(\frac{{50\sqrt 3 }}{{10}})}^2}} = 10\;cm\)
Lưu ý : Biên độ : \(A = \Delta {\ell _0} = 10(cm).\)
chu kì: \[T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{10}} = \frac{\pi }{5}s.\]
Thời gian ngắn nhất từ khi m rời giá đỡ D cho đến khi
vật m trở lại vị trí lò xo không biến dạng lần thứ nhất.
(Dùng vòng tròn pha ) \[t = \frac{T}{{12}} + \frac{T}{2} + \frac{T}{4} = \frac{{5T}}{6} = \frac{\pi }{6}s.\]=> đáp án C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biên độ bụng, ta có : \[\begin{array}{l}\omega \sqrt {{A^2} - {u^2}} = \frac{{15\pi }}{{100}}v \Leftrightarrow \frac{{2\pi }}{T}\sqrt {{A^2} - {u^2}} = \frac{{15\pi }}{{100}}\frac{\lambda }{T}\\ \Rightarrow \sqrt {{A^2} - {u^2}} = \frac{{15\lambda }}{{200}} = \frac{{15.60}}{{200}} = 4,5cm.\end{array}\]
\[ = > A = \sqrt {4,{5^2} + {6^2}} = 7,5cm\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.