Câu hỏi:

16/05/2023 742

Cho a, b ℝ thỏa mãn \(\left( {1 + a} \right)\left( {1 + b} \right) = \frac{9}{4}\). Tìm giá trị nhỏ nhất của \(P = \sqrt {1 + {a^4}} + \sqrt {1 + {b^4}} \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có \(\left( {1 + a} \right)\left( {1 + b} \right) = \frac{9}{4}\)

\( \Leftrightarrow a + b + ab + 1 = \frac{9}{4}\)

\( \Leftrightarrow a + b + ab = \frac{4}{4}\)

Áp dụng bất đẳng thức Cô – si ta có

a2 + b2 ≥ 2ab

\[{{\rm{a}}^2} + \frac{1}{4} \ge 2.a.\frac{1}{2} = a\]

\[{b^2} + \frac{1}{4} \ge 2.b.\frac{1}{2} = b\]

Suy ra \[{{\rm{a}}^2}{\rm{ + }}{{\rm{b}}^2}{\rm{ + 2}}\left( {{{\rm{a}}^2} + \frac{1}{4}} \right) + 2\left( {{b^2} + \frac{1}{4}} \right) \ge 2ab + 2{\rm{a}} + 2b\]

3(a2 + b2) + 1 ≥ 2(a + b + ab)

\( \Leftrightarrow 3\left( {{a^2} + {b^2}} \right) \ge 2.\frac{5}{4} - 1 = \frac{3}{2}\)

\( \Leftrightarrow {a^2} + {b^2} \ge \frac{1}{2}\)

Áp dụng bất đẳng thức Min – cốp – ski ta có

\(P = \sqrt {1 + {a^4}} + \sqrt {1 + {b^4}} = \sqrt {{1^2} + {{\left( {{a^2}} \right)}^2}} + \sqrt {{1^2} + {{\left( {{b^2}} \right)}^2}} \ge \sqrt {\left( {{1^2} + {1^2}} \right) + {{\left( {{a^2} + {b^2}} \right)}^2}} \)

\[ \Leftrightarrow P \ge \sqrt {4 + {{\left( {{a^2} + {b^2}} \right)}^2}} \]

\( \Leftrightarrow P \ge \sqrt {4 + {{\left( {\frac{1}{2}} \right)}^2}} \)

\( \Leftrightarrow P \ge \frac{{\sqrt {17} }}{2}\)

Dấu “ = ” xảy ra khi \[{\rm{a}} = b = \frac{1}{2}\]

Vậy P đạt giá trị nhỏ nhất bằng \(\frac{{\sqrt {17} }}{2}\) khi \[{\rm{a}} = b = \frac{1}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Muốn nhân hai lũy thừa khác cơ số và số mũ ta sẽ đổi từ dạng lũy thừa sang dạng số tự nhiên và tính bình thường.

Ta có ví dụ sau:

25 . 32 = 32 . 9 = 288.

Lời giải

Lời giải

Ta có 1 ngày = 24 giờ

Suy ra \(\frac{1}{4}\) ngày bằng số giờ là:

\(24{\rm{ }} \times {\rm{ }}\frac{1}{4} = 6\) (giờ)

Vậy \(\frac{1}{4}\) ngày = 6 giờ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP