Cho đa thức P(x) có tất cả các hệ số đều là số tự nhiên, nhỏ hơn 5, thỏa mãn điều kiện P(5) = 259. Tính P(2049).
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Giả sử P(x)= ax3 + bx2 + cx + d (0 ≤ a, b, c, d < 5)
P(5) = 259
⇔ 125a + 25b + 5c + d = 259
Vì 0 ≤ a, b, c, d < 5
Nên a = 2
Suy ra 25 b + 5c + d = 259 – 125 . 2 = 9
Vì 9 < 25 nên b = 0
Khi đó 5c + d = 9
Mà 0 ≤ c, d < 5
Suy ra c = 1, d = 4
Do đó P(x) = 2x3 + x + 4
Suy ra P(2049) = 2 . 20493 + 2049 + 4 = 17 205 049 351
Vậy P(2049) = 17 205 049 351.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Muốn nhân hai lũy thừa khác cơ số và số mũ ta sẽ đổi từ dạng lũy thừa sang dạng số tự nhiên và tính bình thường.
Ta có ví dụ sau:
25 . 32 = 32 . 9 = 288.
Lời giải
Lời giải
Ta có 1 ngày = 24 giờ
Suy ra \(\frac{1}{4}\) ngày bằng số giờ là:
\(24{\rm{ }} \times {\rm{ }}\frac{1}{4} = 6\) (giờ)
Vậy \(\frac{1}{4}\) ngày = 6 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.