Cho đa thức P(x) có tất cả các hệ số đều là số tự nhiên, nhỏ hơn 5, thỏa mãn điều kiện P(5) = 259. Tính P(2049).
Quảng cáo
Trả lời:

Lời giải
Giả sử P(x)= ax3 + bx2 + cx + d (0 ≤ a, b, c, d < 5)
P(5) = 259
⇔ 125a + 25b + 5c + d = 259
Vì 0 ≤ a, b, c, d < 5
Nên a = 2
Suy ra 25 b + 5c + d = 259 – 125 . 2 = 9
Vì 9 < 25 nên b = 0
Khi đó 5c + d = 9
Mà 0 ≤ c, d < 5
Suy ra c = 1, d = 4
Do đó P(x) = 2x3 + x + 4
Suy ra P(2049) = 2 . 20493 + 2049 + 4 = 17 205 049 351
Vậy P(2049) = 17 205 049 351.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Muốn nhân hai lũy thừa khác cơ số và số mũ ta sẽ đổi từ dạng lũy thừa sang dạng số tự nhiên và tính bình thường.
Ta có ví dụ sau:
25 . 32 = 32 . 9 = 288.
Lời giải
Lời giải
Ta có 1 ngày = 24 giờ
Suy ra \(\frac{1}{4}\) ngày bằng số giờ là:
\(24{\rm{ }} \times {\rm{ }}\frac{1}{4} = 6\) (giờ)
Vậy \(\frac{1}{4}\) ngày = 6 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.