Câu hỏi:

11/07/2024 275 Lưu

Tìm giá trị của x để các biểu thức sau nhận giá trị nguyên:

a) \[B = \frac{{2\sqrt x + 7}}{{\sqrt x + 1}}\];

b) \[C = \frac{{2\sqrt x }}{{x + \sqrt x + 1}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Điều kiện xác định: x ³ 0

Ta có: \[B = \frac{{2\sqrt x + 2 + 5}}{{\sqrt x + 1}} = \frac{{2\left( {\sqrt x + 1} \right) + 5}}{{\sqrt x + 1}} = 2 + \frac{5}{{\sqrt x + 1}}\]

Þ B Î\[ \Leftrightarrow \frac{5}{{\sqrt x + 1}} \in \mathbb{Z}\]

Với \[\sqrt x \ge 0 \Rightarrow \sqrt x + 1 \ge 1\]

\[ \Rightarrow 0 < \frac{5}{{\sqrt x + 1}} \le 5\]

\[ \Rightarrow \frac{5}{{\sqrt x + 1}} \in \left\{ {1;\,\,2;\,\,3;\,\,4;\,\,5} \right\}\].

Ta có các bảng sau:

\[\frac{5}{{\sqrt x + 1}}\]

1

2

3

4

5

x

16

2,25

\[\frac{4}{9}\]

\[\frac{1}{{16}}\]

0

Kết luận: x Î {16; \[\frac{9}{4}\]; \[\frac{4}{9}\]; \[\frac{1}{{16}}\]; 0} thì B nhận giá trị nguyên.

b) Điều kiện xác định: x ³ 0

x ³ 0 \[ \Rightarrow \left\{ \begin{array}{l}2\sqrt x \ge 0\\x + \sqrt x + 1 \ge 0\end{array} \right. \Rightarrow \frac{{2\sqrt x }}{{x + \sqrt x + 1}} \ge 0\](*)

Ta có: \[x \ge 0 \Rightarrow \frac{{2\sqrt x }}{{x + \sqrt x + 1}} = \frac{{\frac{{2\sqrt x }}{{\sqrt x }}}}{{\frac{x}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x }} + \frac{1}{{\sqrt x }}}} = \frac{2}{{\sqrt x + 1 + \frac{1}{{\sqrt x }}}}\]

Áp dụng bất đẳng thức Cauchy, ta có:

\[\sqrt x + \frac{1}{{\sqrt x }} \ge 2 \Rightarrow \sqrt x + \frac{1}{{\sqrt x }} + 1 \ge 2 + 1 = 3\]

\[ \Rightarrow \frac{2}{{\sqrt x + 1 + \frac{1}{{\sqrt x }}}} \le \frac{2}{3}\] (**)

Từ (*) và (**) \[ \Rightarrow 0 \le \frac{2}{{\sqrt x + 1 + \frac{1}{{\sqrt x }}}} \le \frac{2}{3}\]

Mà C nhận giá trị nguyên Þ C = 0 \[ \Rightarrow \frac{{2\sqrt x }}{{x + \sqrt x + 1}} = 0 \Leftrightarrow x = 0\].

Vậy với x = 0 thì C nhận giá trị nguyên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

1 + 2 + 3 + ... + 99 + 100

= (1 + 99) + (2 + 98) + (3 + 97) + ... + 100

= 100 + 100 + 100 + ... + 100 (50 số 100)

= 100 × 50

= 5000

Lời giải

Một bạn lớp 5A trồng 3 cây thì thừa 2 cây.

Một bạn 5B trồng 4 cây thì thiếu 38 cây, cũng như 1 bạn 5A trồng 4 cây thì thiếu:

38 + 5 = 43 (cây)

Số cây đủ cho một bạn trồng 4 cây nhiều hơn số cây đủ cho một bạn trồng 3 cây là:

2 + 43 = 45 (cây)

Một bạn trồng 4 cây nhiều hơn một bạn trồng 3 cây số cây là:

4 - 3 = 1 (cây)

Số học sinh lớp 5A (hoặc lớp 5B) là:

45 : 1 = 45 (học sinh)

Lớp 5A trồng được số cây là:

45 × 3 + 2 = 137 (cây)

Lớp 5B trồng được số cây là:

45 × 4 - 38 = 142 (cây)

Đáp số: Lớp 5A: 137 cây;

   Lớp 5B: 142 cây.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP