Câu hỏi:

12/07/2024 2,263

Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Điểm E thuộc OC, nối AE cắt (O) tại M.

a) Chứng minh tứ giác OBME nội tiếp.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Điểm E thuộc OC, nối AE cắt (O) tại M. a) Chứng minh tứ giác OBME nội tiếp. (ảnh 1)

Xét đường tròn (O) có AB là đường kính, M thuộc đường tròn

 AMB^=90°EMB^=90°

Do AB vuông góc với CD nên ta có: EOB^=90°

Xét tứ giác OBME có:

EOB^+EMB^=90°+90°=180°

Do đó, tứ giác OBME là tứ giác nội tiếp.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tìm ƯCLN của cả ba loại. Ta có:

374 = 2.11.17

68 = 22.17

340 = 17. 22.5

ƯCLN(374, 68, 340) = 34.

Do đó, số phần thưởng được chia nhiều nhất là 34.

Mỗi phần có:

374 : 34 = 11 (quyển vở)

68 : 34 = 2 (thước kẻ)

340 : 34 = 10 (nhãn vở).

Lời giải

Xét p = 2 thì p + 2 = 2 + 2 = 4 là hợp số [loại]  

Xét p = 3 thì p + 6 = 3 + 6 = 9 là hợp số [loại]

Xét p = 5 thì p + 2 ; p + 6 ; p + 8 ; p + 12 ; p + 14 đều là SNT [thỏa mãn]

Xét p > 5 Thì có các dạng :    5k + 1; 5k + 2; 5k + 3; 5k + 4

Nếu p = 5k + 1 thì p + 14 = 5k + 1 + 14 = 5k + 15 là hợp số mà p > 5 nên p = 5k + 1 là hợp số [loại]

Nếu p = 5k + 2 thì p + 8 = 5k + 2 + 8 = 5k + 10 là hợp số [loại]

Nếu p = 5k + 3 thì p + 12 = 5k + 3 + 12 = 5k + 15 là hợp số [loại]

Nếu p = 5k + 4 thì p + 6 = 5k + 6 = 4 + 6 = 5k + 10 là hợp số [loại]

Do đó, trường hợp p > 5 không có số nào thỏa mãn

Vậy p = 5 thỏa mãn đề bài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP