Câu hỏi:
17/06/2023 1,313
3. Trên cung nhỏ BC của đường tròn (O; R) lấy điểm K bất kỳ (K khác B và C). Tiếp tuyến tại K của đường tròn (O; R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC.
3. Trên cung nhỏ BC của đường tròn (O; R) lấy điểm K bất kỳ (K khác B và C). Tiếp tuyến tại K của đường tròn (O; R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC.
Quảng cáo
Trả lời:
Vì tiếp tuyến BP cắt tiếp tuyến PK tại P
⇒ PB = PK
Vì tiếp tuyến KQ cắt tiếp tuyến QC tại Q nên KQ = QC
Ta có:
Chu vi tam giác APQ = AP + PQ + AQ = AP + PK + KQ + AQ
= (AP + PB) + (QC + AQ) = AB + AC
Vì AB + AC không thay đổi khi K chuyển động trên cung nhỏ BC nên chu vi tam giác AQP không thay đổi khi K thay đổi trên cung nhỏ BC
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tìm ƯCLN của cả ba loại. Ta có:
374 = 2.11.17
68 = 22.17
340 = 17. 22.5
ƯCLN(374, 68, 340) = 34.
Do đó, số phần thưởng được chia nhiều nhất là 34.
Mỗi phần có:
374 : 34 = 11 (quyển vở)
68 : 34 = 2 (thước kẻ)
340 : 34 = 10 (nhãn vở).
Lời giải
Xét p = 2 thì p + 2 = 2 + 2 = 4 là hợp số [loại]
Xét p = 3 thì p + 6 = 3 + 6 = 9 là hợp số [loại]
Xét p = 5 thì p + 2 ; p + 6 ; p + 8 ; p + 12 ; p + 14 đều là SNT [thỏa mãn]
Xét p > 5 Thì có các dạng : 5k + 1; 5k + 2; 5k + 3; 5k + 4
Nếu p = 5k + 1 thì p + 14 = 5k + 1 + 14 = 5k + 15 là hợp số mà p > 5 nên p = 5k + 1 là hợp số [loại]
Nếu p = 5k + 2 thì p + 8 = 5k + 2 + 8 = 5k + 10 là hợp số [loại]
Nếu p = 5k + 3 thì p + 12 = 5k + 3 + 12 = 5k + 15 là hợp số [loại]
Nếu p = 5k + 4 thì p + 6 = 5k + 6 = 4 + 6 = 5k + 10 là hợp số [loại]
Do đó, trường hợp p > 5 không có số nào thỏa mãn
Vậy p = 5 thỏa mãn đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.