Cho tam giác ABC vuông tại A, . Tia phân giác của cắt cạnh AC tại M. Lấy K trên cạnh BC sao cho BK = BA.
a) Chứng minh tam giác ABM và tam giác KBM.
Cho tam giác ABC vuông tại A, . Tia phân giác của cắt cạnh AC tại M. Lấy K trên cạnh BC sao cho BK = BA.
a) Chứng minh tam giác ABM và tam giác KBM.
Quảng cáo
Trả lời:

a)

Xét tam giác ABM và tam giác KBM có:
BA = BK
(vì BM là phân giác)
Chung BM
Do đó, tam giác ABM bằng tam giác KBM (c.g.c)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tìm ƯCLN của cả ba loại. Ta có:
374 = 2.11.17
68 = 22.17
340 = 17. 22.5
ƯCLN(374, 68, 340) = 34.
Do đó, số phần thưởng được chia nhiều nhất là 34.
Mỗi phần có:
374 : 34 = 11 (quyển vở)
68 : 34 = 2 (thước kẻ)
340 : 34 = 10 (nhãn vở).
Lời giải
Xét p = 2 thì p + 2 = 2 + 2 = 4 là hợp số [loại]
Xét p = 3 thì p + 6 = 3 + 6 = 9 là hợp số [loại]
Xét p = 5 thì p + 2 ; p + 6 ; p + 8 ; p + 12 ; p + 14 đều là SNT [thỏa mãn]
Xét p > 5 Thì có các dạng : 5k + 1; 5k + 2; 5k + 3; 5k + 4
Nếu p = 5k + 1 thì p + 14 = 5k + 1 + 14 = 5k + 15 là hợp số mà p > 5 nên p = 5k + 1 là hợp số [loại]
Nếu p = 5k + 2 thì p + 8 = 5k + 2 + 8 = 5k + 10 là hợp số [loại]
Nếu p = 5k + 3 thì p + 12 = 5k + 3 + 12 = 5k + 15 là hợp số [loại]
Nếu p = 5k + 4 thì p + 6 = 5k + 6 = 4 + 6 = 5k + 10 là hợp số [loại]
Do đó, trường hợp p > 5 không có số nào thỏa mãn
Vậy p = 5 thỏa mãn đề bài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.