Đặt một điện áp xoay chiêu \({\rm{u}} = {{\rm{U}}_0}{\rm{cos\omega t\;}}\left( {\rm{V}} \right)\) vào hai đầu đoạn mạch \({\rm{AB}}\) theo thứ tự gồm điện trở \({\rm{R}} = 90{\rm{\Omega }}\), cuộn dây không thuần cảm có điện trở \({\rm{r}} = 10{\rm{\Omega }}\) và tụ điện có điện dung \({\rm{C}}\) thay đổi được. \({\rm{M}}\) là điểm nối giữa điện trở \({\rm{R}}\) và cuộn dây. Khi \({\rm{C}} = {{\rm{C}}_1}\) thì điện áp hiệu dụng hai đầu đoạn mạch \({\rm{MB}}\) đạt giá trị cực tiểu bằng \({{\rm{U}}_1}\). Khi \({\rm{C}} = {{\rm{C}}_2} = 0,5{{\rm{C}}_1}\) thì điện áp hiệu dụng giữa hai bản tụ đạt giá trị cực đại bằng \({{\rm{U}}_2}\). Tỉ số \({{\rm{U}}_2}/{{\rm{U}}_1}\) bằng
Đặt một điện áp xoay chiêu \({\rm{u}} = {{\rm{U}}_0}{\rm{cos\omega t\;}}\left( {\rm{V}} \right)\) vào hai đầu đoạn mạch \({\rm{AB}}\) theo thứ tự gồm điện trở \({\rm{R}} = 90{\rm{\Omega }}\), cuộn dây không thuần cảm có điện trở \({\rm{r}} = 10{\rm{\Omega }}\) và tụ điện có điện dung \({\rm{C}}\) thay đổi được. \({\rm{M}}\) là điểm nối giữa điện trở \({\rm{R}}\) và cuộn dây. Khi \({\rm{C}} = {{\rm{C}}_1}\) thì điện áp hiệu dụng hai đầu đoạn mạch \({\rm{MB}}\) đạt giá trị cực tiểu bằng \({{\rm{U}}_1}\). Khi \({\rm{C}} = {{\rm{C}}_2} = 0,5{{\rm{C}}_1}\) thì điện áp hiệu dụng giữa hai bản tụ đạt giá trị cực đại bằng \({{\rm{U}}_2}\). Tỉ số \({{\rm{U}}_2}/{{\rm{U}}_1}\) bằng
Quảng cáo
Trả lời:
\({U_{MB\min }} \to \)cộng hưởng \({Z_{C1}} = {Z_L} \Rightarrow {U_1} = \frac{{Ur}}{{R + r}} = \frac{{U.10}}{{90 + 10}} = 0,1U\)
Khi
Vậy \(\frac{{{U_2}}}{{{U_1}}} = \frac{{U\sqrt 2 }}{{0,1U}} = 10\sqrt 2 \). Chọn C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(i = \frac{{\lambda D}}{a} = \frac{{0,5.1}}{{0,4}} = 1,25mm\)
\( - \frac{L}{2} \le ki \le \frac{L}{2} \Rightarrow - \frac{{13}}{2} \le k.1,25 \le \frac{{13}}{2} \Rightarrow - 5,2 < k < 5,2 \to \)có 11 giá trị k nguyên. Chọn D
Lời giải
Giả sử ban đầu có 1 mol Po \( \Rightarrow {m_{Po}} = 210g \to \)khối lượng mẫu ban đầu là \({m_0} = \frac{{210}}{{0,4}} = 525g\)
\(525g\left\{ \begin{array}{l}Po:{\rm{ }}1mol\\Tapchat\end{array} \right. \to \left\{ \begin{array}{l}Po:{\rm{ }}{2^{\frac{{ - t}}{T}}}{\rm{ }}mol{\rm{ }}\\Pb:{\rm{ }}1 - {2^{\frac{{ - t}}{T}}}{\rm{ }}mol\\Tapchat{\rm{ }}\\{\rm{ }}\end{array} \right.{\rm{ }} + {\rm{ }}\alpha :{\rm{ }}1 - {2^{\frac{{ - t}}{T}}}{\rm{ }}mol\)
\(\frac{{{m_{Po}}}}{{{m_{m\^a u}}}} = \frac{{{m_{Po}}}}{{{m_0} - {m_\alpha }}} = \frac{{{{210.2}^{\frac{{ - t}}{T}}}}}{{525 - 4.\left( {1 - {2^{\frac{{ - t}}{T}}}} \right)}} \Rightarrow \left\{ \begin{array}{l}0,3 = \frac{{{{210.2}^{\frac{{ - {t_1}}}{{138}}}}}}{{525 - 4.\left( {1 - {2^{\frac{{ - {t_1}}}{{138}}}}} \right)}}\\0,15 = \frac{{{{210.2}^{\frac{{ - {t_2}}}{{138}}}}}}{{525 - 4.\left( {1 - {2^{\frac{{ - {t_2}}}{{138}}}}} \right)}}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{t_1} \approx 57,66\\{t_2} \approx 196,23\end{array} \right.\) (ngày)
Vậy \({t_2} - {t_1} = 196,23 - 57,66 = 138,57\) (ngày). Chọn A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.