Câu hỏi:

13/07/2024 3,374 Lưu

Có thể lập được bao nhiêu số tự nhiên có 4 chữ số luôn có mặt chữ số 1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số cần lập là abcd¯  (a {1; 2; ...; 9}; b, c, d {0; 1; ...; 9}).

Vì luôn có mặt chữ số 1 nên ta có 2 trường hợp sau:

TH1: a = 1, khi đó có 10 cách chọn b, 10 cách chọn c và 10 cách chọn d.

Suy ra có 103 = 1000 số thỏa mãn.

TH2: a ≠ 1, a có 8 cách chọn.

Có 3 cách chọn vị trí bắt buộc để có mặt chữ số 1 là ở b hoặc c hoặc d.

Hai chữ số còn lại, mỗi chữ số có 10 cách chọn.

Suy ra trường hợp này có 8 . 3 . 102 = 2400 số thỏa mãn.

Vậy có tất cả 1000 + 2400 = 3400 số thỏa mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kí hiệu A và B lần lượt là tập các học sinh học giỏi môn hóa và môn văn.

Ta có A B = 40. Theo quy tắc cộng mở rộng ta có:

n (A ∩ B) = n(A) + n(B) − n(A B) = 30 + 25 – 40 = 15

Vậy có 15 em học giỏi cả 2 môn.

Lời giải

5x1+5.0,2x2=265x1+55x2=265x1+255x1=26

Đặt 5x1=a

a+25a=26a226a+25=0a=1a=255x1=15x1=25x1=0x1=2x=1x=3x1+x2=1+3=4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP