Câu hỏi:

13/07/2024 213 Lưu

Cho ΔABC và điểm M AB. Gọi N là trung điểm AC. Trên tia MN lấy điểm P sao cho NP = MN. Chứng minh:

a) MC // AP và MC = AP

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho ΔABC và điểm M ∈ AB. Gọi N là trung điểm AC. Trên tia MN lấy điểm P sao cho NP = MN. Chứng minh: a) MC // AP và MC = AP (ảnh 1)

a, Vì N là trung điểm của AC

suy ra AN = CN

Xét ΔANP  và  ΔCNM:

AN = CN

MN = NP

ANP^=CNM^ (hai góc đối đỉnh)

ΔANP=ΔCNM

MC = AP và NAP^=NCM^  mà hai góc này so le trong

MC // AP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kí hiệu A và B lần lượt là tập các học sinh học giỏi môn hóa và môn văn.

Ta có A B = 40. Theo quy tắc cộng mở rộng ta có:

n (A ∩ B) = n(A) + n(B) − n(A B) = 30 + 25 – 40 = 15

Vậy có 15 em học giỏi cả 2 môn.

Lời giải

5x1+5.0,2x2=265x1+55x2=265x1+255x1=26

Đặt 5x1=a

a+25a=26a226a+25=0a=1a=255x1=15x1=25x1=0x1=2x=1x=3x1+x2=1+3=4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP