Câu hỏi:

13/07/2024 1,566 Lưu

Cho hình thang ABCD có AB // CD (AB < CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với hai đáy của hình thang cắt hai đường chéo BD và AC tại E và F, cắt BC tại N. Chứng minh rằng N, E, F lần lượt là trung điểm của BC, BD, AC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang ABCD có AB // CD (AB < CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với hai đáy của hình thang cắt hai đường chéo BD và AC tại E và F, cắt BC tại N. Chứng minh rằng N, E, F lần lượt là trung điểm của BC, BD, AC. (ảnh 1)

Xét hình thang ABCD có:

MA = MD

N BC

MN // AB // CD

Suy ra N là trung điểm của BC.

Xét ΔADC  có:

MA = MD; MF // DC

FA = FC F là trung điểm của AC.

Xét ΔADB   có:

MA = MD; ME // AB

DE = BE E là trung điểm của BD

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Kí hiệu A và B lần lượt là tập các học sinh học giỏi môn hóa và môn văn.

Ta có A B = 40. Theo quy tắc cộng mở rộng ta có:

n (A ∩ B) = n(A) + n(B) − n(A B) = 30 + 25 – 40 = 15

Vậy có 15 em học giỏi cả 2 môn.

Lời giải

5x1+5.0,2x2=265x1+55x2=265x1+255x1=26

Đặt 5x1=a

a+25a=26a226a+25=0a=1a=255x1=15x1=25x1=0x1=2x=1x=3x1+x2=1+3=4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP