Câu hỏi:

11/07/2024 4,086

Cho a, b, c là ba số tuỳ ý. Chứng minh: Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Do a + b + c = 0 nên c = ‒a ‒ b.

Khi đó:

a3 + b3 + c3 = a3 + b3 + (‒a ‒ b)3

= a3 + b3 + (‒a)3 ‒ 3(–a)2b + 3(–a)b2 ‒ b3

= a3 + b3 ‒ a3 ‒ 3a2b ‒ 3ab2 ‒ b3

= ‒3a2b ‒ 3ab2 = 3ab(‒a ‒ b) = 3abc

Vậy nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) \({x^3}\left( { - \frac{5}{4}{x^2}y} \right)\left( {\frac{2}{5}{x^3}{y^4}} \right)\)

\( = \left( { - \frac{5}{4}.\frac{2}{5}} \right).\left( {{x^3}.{x^2}.{x^3}} \right)\left( {y.{y^4}} \right)\)

\( = \frac{{ - 1}}{2}{x^8}{y^5}\).

b) \(\left( { - \frac{3}{4}{x^5}{y^4}} \right)\left( {x{y^2}} \right)\left( { - \frac{8}{9}{x^2}{y^5}} \right)\)

\( = \left( {\frac{{ - 3}}{4}.\frac{{ - 8}}{9}} \right).\left( {{x^5}.x.{x^2}} \right)\left( {{y^4}.{y^2}.{y^5}} \right)\)

\( = \frac{2}{3}{x^8}{y^{11}}\).

Lời giải

Lời giải

a) A = 16x2 ‒ 8xy + y2 ‒ 21

= [(4x)2 ‒ 2.4x.y + y2] ‒ 21

= (4x ‒ y)2 ‒ 21

Mà 4x = y + 1 nên 4x ‒ y = 1

Thay vào A ta có: A = 12 ‒ 21 = ‒20.

b) B = 25x2 + 60xy + 36y2 + 22

= [(5x)2 + 2.5x.6y + (6y)2] + 22

= (5x + 6y)2 + 22

Mà 6y = 2 ‒ 5x nên 5x + 6y = 2

Thay vào B ta có:

 B = 22 + 22 = 26.

c) C = 27x3 – 27x2y + 9xy2 – y3 – 121

= [(3x)3 ‒ 3.(3x)2.y + 3.3x.y2 – y3] – 121

= (3x ‒ y)3 ‒ 121

3x = 7 + y nên 3x ‒ y = 7

Thay vào C ta có:

C = 73121 = 343 – 121 = 222.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Biểu thức nào sau đây là một đơn thức?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay