Câu hỏi:

03/07/2023 1,185

Tìm số tự nhiên n để n3 – n2 + n – 1 là số nguyên tố.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có: n3 – n2 + n – 1

= (n3 ‒ n2) + (n ‒ 1)

= n2(n ‒ 1) + (n ‒ 1)

= (n ‒ 1)(n2 + 1).

Với mọi số tự nhiên n, ta có: n ‒ 1 < n2 + 1.

Do đó, để n3 – n2 + n – 1 là số nguyên tố thì n ‒ 1 = 1 nên \(n = 2\).

Khi đó n3 – n2 + n – 1 = 5 là số nguyên tố.

Vậy n = 2 thoả mãn yêu cầu của đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Thực hiện phép tính:

a) \({x^3}\left( { - \frac{5}{4}{x^2}y} \right)\left( {\frac{2}{5}{x^3}{y^4}} \right)\);

b) \(\left( { - \frac{3}{4}{x^5}{y^4}} \right)\left( {x{y^2}} \right)\left( { - \frac{8}{9}{x^2}{y^5}} \right)\).

Xem đáp án » 11/07/2024 3,571

Câu 2:

Cho a, b, c là ba số tuỳ ý. Chứng minh: Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.

Xem đáp án » 11/07/2024 3,555

Câu 3:

Tính giá trị của mỗi biểu thức sau:

a) A = 16x2 ‒ 8xy + y2 ‒ 21 biết 4x = y + 1;

b) B = 25x2 + 60xy + 36y2 + 22 biết 6y = 2 ‒ 5x;

c) C = 27x3 – 27x2y + 9xy2 – y3 – 121 biết 3x = 7 + y.

Xem đáp án » 11/07/2024 2,652

Câu 4:

Phân tích mỗi đa thức sau thành nhân tử:

a) \(3{x^2} - \sqrt 3 x + \frac{1}{4}\);

b) x2 – x – y2 + y;

c) x3 + 2x2 + x – 16xy2.

Xem đáp án » 11/07/2024 1,544

Câu 5:

Cho hai đa thức: M = 23x23y ‒ 22xy23 + 21y ‒ 1 N = ‒22xy3 ‒ 42y ‒ 1.

a) Tính giá trị của mỗi đa thức M, N tại x = 0; y = –2.

b) Tính M + N; M – N.

c) Tìm đa thức P sao cho M – N – P = 63y + 1.

Xem đáp án » 03/07/2023 1,316

Câu 6:

Biểu thức nào sau đây là một đơn thức?

Xem đáp án » 03/07/2023 1,135

Bình luận


Bình luận