Câu hỏi:
03/07/2023 808Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: A
Số cách lấy ra 8 viên bi bất kì: \(C_{16}^8 = 12\,\,870\)
Số cách lấy ra 8 viên bi không có màu vàng mà chỉ có hai màu xanh và đỏ: \(C_7^7C_5^1 + C_7^6C_5^2 + C_7^5C_5^3 + C_7^4C_5^4 + C_7^3C_5^5 = 495\)
Số cách lấy ra 8 viên bi không có màu đỏ mà có hai màu xanh và vàng:
\(C_7^7C_4^1 + C_7^6C_4^2 + C_7^5C_4^3 + C_7^4C_4^4 = 165\)
Số cách lấy ra 8 viên bi không có màu xanh mà chỉ có hai màu đỏ và vàng:
\(C_5^5C_4^3 + C_5^4C_4^4 = 9\)
Số cách lấy ra 8 viên bi có đủ 3 màu:
12 870 − (495 + 165 + 9) = 12 201 (cách).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 4:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
Câu 5:
Câu 6:
Tìm giá trị của x để đa thức dư trong mỗi phép chia sau có giá trị bằng 0:
a) (3x5 – x4 – 2x3 + x2 + 4x + 5) : (x2 – 2x + 2);
b) (x5 + 2x4 + 3x2 + x – 3) : (x2 + 1).
Câu 7:
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a, 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b, 3 điểm M, N, H thẳng hàng.
c, HA . HF = R2 – OH2.
về câu hỏi!