Câu hỏi:

12/07/2024 232

Cho (O; R) và (O'; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN.

a) Chứng minh: OM // ON.

b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO’ lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho (O; R) và (O'; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung (ảnh 1)

a) Ta có: \({\widehat O_1} = {180^{\rm{o}}} - 2{\widehat A_1}\)

               \(\widehat {{{O'}_1}} = 2{\widehat A_2} = 2\left( {{{90}^{\rm{o}}} - {{\widehat A}_1}} \right) = {180^{\rm{o}}} - 2{\widehat A_1}\)

Do đó: \({\widehat O_1} = \widehat {{{O'}_1}} \Rightarrow OM\,{\rm{//}}\,O'N\)

b) Gọi \(P\) là giao điểm của \(MN\)\(OO'\)

Ta có: \(\frac{{PO'}}{{PO}} = \frac{{O'N}}{{OM}} = \frac{{R'}}{R}\)

Gọi \(P'\) là giao điểm của \(BC\)\(OO'\)

\(OB\,{\rm{//}}\,O'C\) nên \(\frac{{P'O'}}{{P'O}} = \frac{{O'C}}{{OB}} = \frac{{R'}}{R}\).

Suy ra \(P'\) trùng với \(P\) (vì cùng ở ngoài đoạn thẳng \(OO'\) theo tỉ số \(\frac{{R'}}{R}\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[A = \left[ { - 2; - 1} \right] \cup \left[ {1;2} \right]\]; \[B = \left( { - \infty ;m - 2} \right] \cup \left[ {m; + \infty } \right)\]

Để A B, ta có:

TH1: \[\left\{ \begin{array}{l}m - 2 \ge - 1\\m \le 1\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}m \ge 1\\m \le 1\end{array} \right.\]\[ \Leftrightarrow m = 1\].

TH2. m ≤ 2.

TH3. m ‒ 2 ≥ 2 m ≥ 4.

Vậy \[\left[ \begin{array}{l}m \ge 4\\m \le - 2\\m = 1\end{array} \right.\] thì A B.

Lời giải

4x3=0x=34

Để B có đúng 2 tập con thì B có duy nhất một phần tử, và B  A nên B có một phần tử thuộc A.

Nên mx2 ‒ 4x + m ‒ 3 = 0 (1) có nghiệm duy nhất và nghiệm đó lớn hơn 0.

Với m = 0, ta có phương trình: (loại).

Với m ≠ 0, phương trình (1) có nghiệm duy nhất lớn hơn 0 khi và chỉ khi:

∆’ = 4 – m(m – 3) = 0.

m2+3m+4=0m=1m=4

Với m = –1, ta có: –x2 – 4x – 4 = 0 x = –2 (loại).

Với m = 4, ta có: 4x2 – 4x + 1 = 0.

Phương trình có nghiệm x=12>0.

Vậy m = 4 thỏa yêu cầu bài toán.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP