Câu hỏi:

05/07/2023 218

Chứng minh với mọi n ℤ ta có: \[\frac{1}{{2\sqrt 1 }} + \frac{1}{{3\sqrt 2 }} + \frac{1}{{4\sqrt 3 }} + ... + \frac{1}{{\left( {n + 1} \right)\sqrt n }} < 2\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(\frac{1}{{\left( {k + 1} \right)\sqrt k }} = \frac{{\sqrt k }}{{k\left( {k + 1} \right)}} = \sqrt k \left( {\frac{1}{k} - \frac{1}{{k + 1}}} \right)\)

        \( = \sqrt k \left( {\frac{1}{{\sqrt k }} + \frac{1}{{\sqrt {k + 1} }}} \right)\left( {\frac{1}{{\sqrt k }} - \frac{1}{{\sqrt {k + 1} }}} \right)\)

        \( = \left( {1 + \frac{{\sqrt k }}{{\sqrt {k + 1} }}} \right)\left( {\frac{1}{{\sqrt k }} - \frac{1}{{\sqrt {k + 1} }}} \right)\)

Do \(\frac{{\sqrt k }}{{\sqrt {k + 1} }} < 1 \Rightarrow 1 + \frac{{\sqrt k }}{{\sqrt {k + 1} }} < 2 \Rightarrow \frac{1}{{\left( {k + 1} \right)\sqrt k }} < 2\left( {\frac{1}{{\sqrt k }} - \frac{1}{{\sqrt {k + 1} }}} \right)\)

Áp dụng BĐT này, ta có: \(\frac{1}{2} < 2\left( {\frac{1}{1} - \frac{1}{{\sqrt 2 }}} \right)\)

                                         \(\frac{1}{{3\sqrt 2 }} < 2\left( {\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }}} \right)\)

                                         \(\frac{1}{{\left( {n + 1} \right)\sqrt n }} < 2\left( {\frac{1}{{\sqrt n }} - \frac{1}{{\sqrt {n + 1} }}} \right)\)

Cộng tất cả các BĐT trên ta được:

\(\frac{1}{2} + \frac{1}{{3\sqrt 2 }} + \frac{1}{{4\sqrt 3 }} + \ldots + \frac{1}{{\left( {n + 1} \right)\sqrt n }} < 2\left( {\frac{1}{1} - \frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }} + \ldots + \frac{1}{{\sqrt n }} - \frac{1}{{\sqrt {n + 1} }}} \right)\).

\(\; \Leftrightarrow \frac{1}{2} + \frac{1}{{3\sqrt 2 }} + \frac{1}{{4\sqrt 3 }} + \ldots + \frac{1}{{\left( {n + 1} \right)\sqrt n }} < 2\left( {1 - \frac{1}{{\sqrt {n + 1} }}} \right) < 2\) (đpcm).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai tập hợp A = {x | 1≤ |x| 2}; B = (–∞; m – 2] [m; +∞).

Tìm tất cả các giá trị của m để A B.

Xem đáp án » 13/07/2024 38,774

Câu 2:

Cho tập hợp A = (0; +∞) và B = {x ℝ | mx2 ‒ 4x + m ‒ 3 = 0}. Tìm m để B có đúng hai tập con và B A.

Xem đáp án » 05/04/2025 23,277

Câu 3:

Từ các số 1, 2, 3, 4, 5 có thể lập được bao nhiêu số có 3 chữ số khác nhau chia hết cho 3.

Xem đáp án » 13/07/2024 14,244

Câu 4:

Lớp 10A có 45 học sinh, trong đó 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Sử, 6 em không thích môn nào trong 3 môn trên và 5 em thích cả 3 môn. Hỏi có bao nhiêu em thích 1 môn trong 3 môn trên?

Xem đáp án » 13/07/2024 12,954

Câu 5:

Cho các tập hợp \(A = \left[ {1 - m;\frac{{m + 3}}{2}} \right]\) và B = (‒∞; ‒3) [3; +∞). Tìm tất cả các số thực m để A  B = ℝ.

Xem đáp án » 13/07/2024 8,758

Câu 6:

Cho hàm số \[y = f\left( x \right) = \frac{{3x + 1}}{{1 - x}}\] (C). Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành.

Xem đáp án » 13/07/2024 4,984

Câu 7:

Tứ giác có hai góc đối bằng 90° có phải là hình chữ nhật không?

Xem đáp án » 13/07/2024 2,898
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua