Chứng minh rằng mọi hàm số f(x) có tập xác định đối xứng, đều có thể viết dưới dạng tổng của một hàm số chẵn và một hàm số lẻ.
Chứng minh rằng mọi hàm số f(x) có tập xác định đối xứng, đều có thể viết dưới dạng tổng của một hàm số chẵn và một hàm số lẻ.
Quảng cáo
Trả lời:

Ta có:
\[f\left( x \right) = \frac{1}{2}\left[ {f\left( x \right) + f\left( { - x} \right)} \right] + \frac{1}{2}\left[ {f\left( x \right) - f\left( { - x} \right)} \right]\] với mọi x ∈ D.
Đặt \[{f_1}\left( x \right) = \frac{1}{2}\left[ {f\left( x \right) + f\left( { - x} \right)} \right]\], \[{f_2}\left( x \right) = \frac{1}{2}\left[ {f\left( x \right) - f\left( { - x} \right)} \right]\] với mọi x ∈ D.
Khi đó \[{f_1}\left( { - x} \right) = \frac{1}{2}\left[ {f\left( { - x} \right) + f\left( { - \left( { - x} \right)} \right)} \right] = \frac{1}{2}\left[ {f\left( { - x} \right) + f\left( x \right)} \right] = {f_1}\left( x \right)\] với mọi x ∈ D.
\[{f_2}\left( { - x} \right) = \frac{1}{2}\left[ {f\left( { - x} \right) - f\left( { - \left( { - x} \right)} \right)} \right] = \frac{1}{2}\left[ {f\left( { - x} \right) - f\left( x \right)} \right] = \frac{{ - 1}}{2}\left[ {f\left( x \right) - f\left( { - x} \right)} \right] = - {f_2}\left( x \right)\] với mọi x ∈ D.
Vậy f1(x) là hàm số chẵn, f2(x) là hàm số lẻ.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[A = \left[ { - 2; - 1} \right] \cup \left[ {1;2} \right]\]; \[B = \left( { - \infty ;m - 2} \right] \cup \left[ {m; + \infty } \right)\]
Để A ⊂ B, ta có:
TH1: \[\left\{ \begin{array}{l}m - 2 \ge - 1\\m \le 1\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}m \ge 1\\m \le 1\end{array} \right.\]\[ \Leftrightarrow m = 1\].
TH2. m ≤ 2.
TH3. m ‒ 2 ≥ 2 ⇔ m ≥ 4.
Vậy \[\left[ \begin{array}{l}m \ge 4\\m \le - 2\\m = 1\end{array} \right.\] thì A ⊂ B.
Lời giải
Để B có đúng 2 tập con thì B có duy nhất một phần tử, và B ⊂ A nên B có một phần tử thuộc A.
Nên mx2 ‒ 4x + m ‒ 3 = 0 (1) có nghiệm duy nhất và nghiệm đó lớn hơn 0.
Với m = 0, ta có phương trình: (loại).
Với m ≠ 0, phương trình (1) có nghiệm duy nhất lớn hơn 0 khi và chỉ khi:
∆’ = 4 – m(m – 3) = 0.
Với m = –1, ta có: –x2 – 4x – 4 = 0 ⇔ x = –2 (loại).
Với m = 4, ta có: 4x2 – 4x + 1 = 0.
Phương trình có nghiệm .
Vậy m = 4 thỏa yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.