Câu hỏi:
13/07/2024 1,987
Chứng minh rằng mọi hàm số f(x) có tập xác định đối xứng, đều có thể viết dưới dạng tổng của một hàm số chẵn và một hàm số lẻ.
Chứng minh rằng mọi hàm số f(x) có tập xác định đối xứng, đều có thể viết dưới dạng tổng của một hàm số chẵn và một hàm số lẻ.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Ta có:
\[f\left( x \right) = \frac{1}{2}\left[ {f\left( x \right) + f\left( { - x} \right)} \right] + \frac{1}{2}\left[ {f\left( x \right) - f\left( { - x} \right)} \right]\] với mọi x ∈ D.
Đặt \[{f_1}\left( x \right) = \frac{1}{2}\left[ {f\left( x \right) + f\left( { - x} \right)} \right]\], \[{f_2}\left( x \right) = \frac{1}{2}\left[ {f\left( x \right) - f\left( { - x} \right)} \right]\] với mọi x ∈ D.
Khi đó \[{f_1}\left( { - x} \right) = \frac{1}{2}\left[ {f\left( { - x} \right) + f\left( { - \left( { - x} \right)} \right)} \right] = \frac{1}{2}\left[ {f\left( { - x} \right) + f\left( x \right)} \right] = {f_1}\left( x \right)\] với mọi x ∈ D.
\[{f_2}\left( { - x} \right) = \frac{1}{2}\left[ {f\left( { - x} \right) - f\left( { - \left( { - x} \right)} \right)} \right] = \frac{1}{2}\left[ {f\left( { - x} \right) - f\left( x \right)} \right] = \frac{{ - 1}}{2}\left[ {f\left( x \right) - f\left( { - x} \right)} \right] = - {f_2}\left( x \right)\] với mọi x ∈ D.
Vậy f1(x) là hàm số chẵn, f2(x) là hàm số lẻ.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: \[A = \left[ { - 2; - 1} \right] \cup \left[ {1;2} \right]\]; \[B = \left( { - \infty ;m - 2} \right] \cup \left[ {m; + \infty } \right)\]
Để A ⊂ B, ta có:
TH1: \[\left\{ \begin{array}{l}m - 2 \ge - 1\\m \le 1\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}m \ge 1\\m \le 1\end{array} \right.\]\[ \Leftrightarrow m = 1\].
TH2. m ≤ 2.
TH3. m ‒ 2 ≥ 2 ⇔ m ≥ 4.
Vậy \[\left[ \begin{array}{l}m \ge 4\\m \le - 2\\m = 1\end{array} \right.\] thì A ⊂ B.
Lời giải
Để B có đúng 2 tập con thì B có duy nhất một phần tử, và B ⊂ A nên B có một phần tử thuộc A.
Nên mx2 ‒ 4x + m ‒ 3 = 0 (1) có nghiệm duy nhất và nghiệm đó lớn hơn 0.
Với m = 0, ta có phương trình: (loại).
Với m ≠ 0, phương trình (1) có nghiệm duy nhất lớn hơn 0 khi và chỉ khi:
∆’ = 4 – m(m – 3) = 0.
Với m = –1, ta có: –x2 – 4x – 4 = 0 ⇔ x = –2 (loại).
Với m = 4, ta có: 4x2 – 4x + 1 = 0.
Phương trình có nghiệm .
Vậy m = 4 thỏa yêu cầu bài toán.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.