CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ảnh của điểm A(– 1; 5) qua phép biến hình f là điểm A'(– 1 + 1; 5 + 2) hay A'(0; 7).

Ảnh của điểm B(2; 3) qua phép biến hình f là điểm B'(2 + 1; 3 + 2) hay B'(3; 5).

Ảnh của điểm C(4; 0) qua phép biến hình f là điểm C'(4 + 1; 0 + 2) hay C'(5; 2).

b) Vì M(x0; y­0) thuộc ∆: x + y – 4 = 0 nên x0 + y0 – 4 = 0 hay x0 + y0 = 4

x0 + y0 + 3 = 4 + 3

(x0 + 1) + (y0 + 2) = 7

(x0 + 1) + (y0 + 2) – 7 = 0

Suy ra M'(x0 + 1; y0 + 2) thuộc đường thẳng ∆': x + y – 7 = 0.

Lời giải

Lời giải:

Phép biến hình f biến điểm I thành chính nó và biến mỗi điểm M khác I thành điểm M' sao cho I là trung điểm của MM'.

Vì A(3; – 2) ≠ I(1; 2) nên phép biến hình f biến điểm A thành điểm A' sao cho I là trung điểm của AA'. Do đó \[\left\{ \begin{array}{l}{x_{A'}} = 2{x_I} - {x_A} = 2.1 - 3 = - 1\\{y_{A'}} = 2{y_I} - {y_A} = 2.2 - \left( { - 2} \right) = 6\end{array} \right.\].

Vậy ảnh của điểm A qua phép biến hình f là điểm A'(– 1; 6).