Câu hỏi:
12/07/2024 375Cho hình tứ diện vuông OABC có các cạnh OA, OB, OC bằng nhau và lần lượt nằm trên các trục Ox, Oy, Oz đôi một vuông góc. Xét phép chiếu vuông góc lên mặt phẳng (P) đi qua O sao cho các trục Ox, Oy, Oz tạo với (P) các góc bằng nhau (H.3.23a). Gọi A', B', C' lần lượt là hình chiếu của A, B, C.
a) Chứng minh rằng ABC là tam giác đều.
b) Giải thích tại sao các khoảng cách từ A, B, C đến (P) bằng nhau, từ đó suy ra mặt phẳng (ABC) song song với mặt phẳng (P).
c) Gọi I là tâm tam giác đều ABC. Giải thích tại sao \(\widehat {A'OB'} = \widehat {AIB}\), từ đó suy ra \(\widehat {A'O'B'} = \widehat {B'O'C'} = \widehat {A'O'C'} = 120^\circ \).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) Ta có: OA = OB = OC, \(\widehat {AOB} = \widehat {BOC} = \widehat {COA} = 90^\circ \).
Suy ra các tam giác AOB, BOC và COA bằng nhau từng đôi một.
Từ đó suy ra AB = BC = CA nên tam giác ABC là tam giác đều.
b) Ta có: OA = OB = OC; \(\widehat {AA'O} = \widehat {BB'O} = \widehat {CC'O} = 90^\circ \); \(\widehat {AOA'} = \widehat {BOB'} = \widehat {COC'} = \alpha \).
Do đó, các tam giác AA'O, BB'O và CCO' bằng nhau từng đôi một.
Từ đó suy ra AA' = BB' = CC'.
Do đó, khoảng cách từ A, B, C đến (P) bằng nhau.
Ta có: AA' = BB', AA' // BB' nên ABB'A' là hình bình hành.
Suy ra: AB // A'B'.
Tương tự ta chứng minh BC // B'C'; CA // C'A'
Mà A'B', B'C', C'A' thuộc (P)
Suy ra: (ABC) song song với (P).
c) Dễ dàng chứng minh được IA = O'A' (AIO'A' là hình bình hành).
Tương tự IB = O'B', AB = A'B'.
Do đó ∆IAB = ∆O'A'B' (c.c.c).
Suy ra \(\widehat {A'O'B'} = \widehat {AIB}\).
Tương tự, ta chứng minh được \(\widehat {A'O'C'} = \widehat {CIA};\,\widehat {B'O'C'} = \widehat {BIC}.\)
Do I là tâm tam giác đều ABC nên dễ dàng chứng minh được \(\widehat {AIB} = \widehat {BIC} = \widehat {CIA} = 120^\circ \).
Nên suy ra \(\widehat {AIB} = \widehat {BIC} = \widehat {CIA} = \widehat {A'O'B'} = \widehat {B'O'C'} = \widehat {A'O'C'}\).
Vậy \(\widehat {A'O'B'} = \widehat {B'O'C'} = \widehat {A'O'C'} = 120^\circ \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Trong các khẳng định sau, những khẳng định nào là đúng?
a) Hình chiếu đứng của một hình ℋ là hình chiếu song song của hình ℋ lên một mặt phẳng nào đó.
b) Hình chiếu đứng và hình chiếu bằng nằm trong hai mặt phẳng vuông góc với nhau.
c) Hình chiếu cạnh của một đường thẳng luôn là một đường thẳng.
d) Hình chiếu bằng của hai điểm phân biệt luôn là hai điểm phân biệt.
Câu 3:
Câu 4:
Câu 5:
Cho ví dụ về một vật thể có cả ba hình chiếu vuông góc là:
a) hình chữ nhật;
b) hình tròn.
Câu 6:
Câu 7:
về câu hỏi!