Câu hỏi:

12/07/2024 424

Trong HĐ7, bằng cách xét tam giác vuông OIA và tính tỉ số \(\frac{{IA}}{{OA}}\), chứng minh rằng trong phép chiếu trục đo vuông góc đều thì p = q = r = \(\frac{{\sqrt 6 }}{3}\).
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

Gọi M là trung điểm của BC.

Ta có: O.ABC là hình chóp tam giác đều nên OA = OB = OC. 

Vì I là tâm tam giác đều ABC nên \({\mathop{\rm I}\nolimits} M = \frac{1}{2}IA\). (1)

Tam giác OBC vuông cân tại O nên OM vừa là đường cao, vừa là đường phân giác, vừa là đường trung tuyến.

Suy ra \(OM = \frac{1}{2}BC\) hay 2OM = BC.

Tam giác vuông cân OBC có 2OB2 = BC2.

Do đó: 2OB2 = 4OM2. Suy ra OM2 = \(\frac{1}{2}\)OA2. (2)

Tam giác OIM vuông tại I có: OI2 + IM2 = OM2. (3)

Mà OI2 = OA2 – IA2 (tam giác OIA vuông tại I) (4)

Thay (1), (2), (4) vào (3) ta được: \(O{A^2} - I{A^2} + \frac{1}{4}I{A^2} = \frac{1}{2}O{A^2}\).

Suy ra \(\frac{{I{A^2}}}{{O{A^2}}} = \frac{2}{3}\) nên \(\frac{{IA}}{{OA}} = \frac{{\sqrt 6 }}{3}\).

Mà IA = O'A' (do AIO'A' là hình bình hành).

Do đó, p = q = r = \(\frac{{O'A'}}{{OA}} = \frac{{\sqrt 6 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Hình chiếu bằng của đoạn thẳng AB có hai đầu mút là hình chiếu bằng A2 của A và hình chiếu bằng B2 của B.

+ Để xác định A2 ta làm như sau:

- Qua điểm A­3 vẽ đường thẳng vuông góc với Ox tại D và trên tia đối của tia Oz lấy điểm F sao cho OD = OF.

- Vẽ đường thẳng qua A1 vuông góc với Ox, vẽ đường thẳng qua F vuông góc với Oz, hai đường thẳng này cắt nhau tại A2.

+ Tương tự xác định B2.

+ Nối A2 và B2 ta nhận được hình chiếu bằng của đoạn thẳng AB.

Media VietJack

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay