Câu hỏi:
13/07/2024 1,928Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Kẻ đường kính BB’.
Do B, C cố định trên (O) nên B’, C cũng cố định trên (O).
Suy ra là vectơ không đổi.
Ta có (góc nội tiếp chắn nửa đường tròn (O)).
Suy ra BC ⊥ B’C.
Mà AH ⊥ BC (do H là trực tâm của ∆ABC).
Do đó AH // B’C (1)
Chứng minh tương tự, ta được AB’ // CH (2)
Từ (1), (2), suy ra tứ giác AHCB’ là hình bình hành.
Suy ra AH = B’C.
Mà AH // B’C (chứng minh trên).
Vì vậy .
Do đó .
Vậy khi A thay đổi trên đường tròn (O) thì trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn (O) là đường tròn (O’) qua .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho phép tịnh tiến trong đó .
a) Tìm ảnh của các điểm A(–3; 4), B(2; –7) qua .
b) Biết rằng M’(2; 6) là ảnh của điểm M qua . Tìm tọa độ của điểm M.
c) Tìm ảnh của đường thẳng d: 4x – 3y + 7 = 0 qua .
Câu 2:
Trong mặt phẳng tọa độ Oxy, xét phép tịnh tiến với .
a) Biết ảnh của điểm M qua là điểm M’(–8; 5). Tìm tọa độ điểm M.
b) Tìm ảnh của đường tròn (C): (x – 2)2 + (y + 3)2 = 4 qua .
Câu 3:
Cho phép tịnh tiến và phép tịnh tiến . Với điểm M bất kì, biến M thành M’, biến M’ thành M’’. Hỏi có phép tịnh tiến nào biến điểm M thành M’’ không?
Câu 4:
Cho đường tròn (O) và hai điểm A, B. Khi điểm M thay đổi trên đường tròn (O) thì điểm M’ thay đổi trên đường nào để ?
Câu 6:
Trong Hình 9, tìm các vectơ và sao cho phép tịnh tiến biến hình mũi tên (A) thành hình mũi tên (B) và phép tịnh tiến biến hình mũi tên (A) thành hình mũi tên (C).
về câu hỏi!