Câu hỏi:

13/07/2024 5,362

Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai điểm B, C cố định trên đường tròn (O; R) và một điểm A thay đổi trên đường tròn đó. Chứng minh trực tâm H của tam giác ABC luôn nằm trên một đường tròn cố định. (ảnh 1)

Kẻ đường kính BB’.

Do B, C cố định trên (O) nên B’, C cũng cố định trên (O).

Suy ra B'C là vectơ không đổi.

Ta có BCB'^=90° (góc nội tiếp chắn nửa đường tròn (O)).

Suy ra BC ⊥ B’C.

Mà AH ⊥ BC (do H là trực tâm của ∆ABC).

Do đó AH // B’C    (1)

Chứng minh tương tự, ta được AB’ // CH    (2)

 Từ (1), (2), suy ra tứ giác AHCB’ là hình bình hành.

Suy ra AH = B’C.

Mà AH // B’C (chứng minh trên).

Vì vậy AH=B'C.

Do đó H=TB'CA.

Vậy khi A thay đổi trên đường tròn (O) thì trực tâm H của tam giác ABC luôn nằm trên ảnh của đường tròn (O) là đường tròn (O’) qua TB'C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP