Câu hỏi:

13/07/2024 1,979

Trong các hình sau, hình nào có trục đối xứng?

Có phép biến hình nào biến một nửa mỗi hình phẳng sau đây thành nửa còn lại không?

Trong các hình sau, hình nào có trục đối xứng? Có phép biến hình nào biến một nửa mỗi hình phẳng sau đây thành nửa còn lại không?   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trong các hình đã cho, cả ba hình đều có trục đối xứng là đường thẳng màu vàng ở mỗi hình.

Ta xét hình chiếc lá:

Trong các hình sau, hình nào có trục đối xứng? Có phép biến hình nào biến một nửa mỗi hình phẳng sau đây thành nửa còn lại không?   (ảnh 2)

Lấy điểm A bất kì trên chiếc lá sao cho A không nằm trên trục  đối xứng d của chiếc lá (hình vẽ).

Khi đó ta luôn xác định được một điểm A’ đối xứng với A qua d hay d là đường trung trực của đoạn thẳng AA’.

Tương tự như vậy, với mỗi điểm M bất kì trên chiếc lá sao cho M không nằm trên d, ta đều xác định được một điểm M’ sao cho d là đường trung trực của đoạn thẳng MM’   (1)

Lấy điểm B bất kì trên chiếc lá sao cho B nằm trên đường thẳng d (hình vẽ).

Khi đó ta có B đối xứng với chính nó qua d.

Tương tự như vậy, với mỗi điểm M bất kì trên chiếc lá sao cho M nằm trên d thì ta luôn có M đối xứng với chính nó qua d   (2)

Từ (1), (2), ta thu được phép biến hình biến một nửa chiếc lá thành nửa còn lại là phép biến hình biến mỗi điểm M không thuộc trục đối xứng d thành điểm M’ sao cho d là đường trung trực của đoạn MM’ và biến mỗi điểm M thuộc d thành chính nó.

Chứng minh tương tự với hình cây thông và hình con bọ, ta cũng được kết quả như trên.

Vậy phép biến hình cần tìm là phép biến hình biến mỗi điểm M không thuộc trục đối xứng d của mỗi hình phẳng thành điểm M’ sao cho d là đường trung trực của đoạn MM’ và biến mỗi điểm M thuộc d thành chính nó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Trục Oy: x = 0.

Thế x = 0 vào phương trình d, ta được 0 – y + 3 = 0 ⇔ y = 3.

Suy ra giao điểm của d và Oy là P(0; 3).

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x – y + 3 = 0 và đường tròn (C): (x + 1)2 + (y + 2)2 = 9. a) Tìm ảnh của đường thẳng d qua ĐOy. b) Tìm ảnh của đường tròn (C) qua ĐOx. (ảnh 1)

Chọn điểm M(1; 4) ∈ d: x – y + 3 = 0

Ta đặt M’ = ĐOy(M).

Suy ra Oy là đường trung trực của MM’ hay M’ là điểm đối xứng với M qua Oy.

Do đó hai điểm M và M’ có cùng tung độ và có hoành độ đối nhau.

Vì vậy tọa độ điểm M’(–1; 4).

Ta có M'P=1;1.

Gọi d’ là ảnh của d qua ĐOy.

Đường thẳng d’ có vectơ chỉ phương M'P=1;1.

Suy ra d’ có vectơ pháp tuyến nd'=1;1.

Vậy đường thẳng d’ đi qua P(0; 3) và có vectơ pháp tuyến nd'=1;1 nên phương trình d’ là: 1.(x – 0) + 1.(y – 3) = 0 hay x + y – 3 = 0.

b) Đường tròn (C) có tâm I(–1; –2), bán kính R = 3.

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x – y + 3 = 0 và đường tròn (C): (x + 1)2 + (y + 2)2 = 9. a) Tìm ảnh của đường thẳng d qua ĐOy. b) Tìm ảnh của đường tròn (C) qua ĐOx. (ảnh 2)

Ta đặt I’ = ĐOx(I).

Suy ra Ox là đường trung trực của II’ hay I’ đối xứng với I qua Ox

Do đó hai điểm I và I’ có cùng hoành độ và có tung độ đối nhau.

Vì vậy tọa độ điểm I’(–1; 2).

Gọi (C’) là ảnh của đường tròn (C) qua ĐOx.

Suy ra (C’) có tâm I’(–1; 2), bán kính R’ = R = 3.

Vậy phương trình đường tròn (C’): (x + 1)2 + (y – 2)2 = 9.

Lời giải

Đường tròn (C) có tâm I(3; 4), bán kính R = 5.

a)

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 3)^2 + (y – 4)^2 = 25 và đường thẳng ∆: 2x + 3y + 4 = 0. a) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Ox. b) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Oy. c) Tìm ảnh của (C) và ∆ qua phép đối xứng trục d: x – y – 3 = 0. (ảnh 1)

⦁ Gọi (C1) là ảnh của (C) qua ĐOx, khi đó (C1) có tâm I1 là ảnh của I(3; 4) ĐOx và bán kính R1 = R = 5.

Ta có I1 = ĐOx(I).

Suy ra Ox là đường trung trực của đoạn II1

Do đó hai điểm I(3; 4) và I1 có cùng hoành độ và có tung độ đối nhau.

Vì vậy tọa độ I1(3; –4).

Vậy ảnh của đường tròn (C) qua ĐOx là đường tròn (C1) có phương trình là:

(x – 3)2 + (y + 4)2 = 25.

⦁ Trục Ox: y = 0.

Với y = 0, ta có 2x + 3.0 + 4 = 0 ⇔ x = –2.

Suy ra giao điểm của ∆ và trục Ox là điểm P(–2; 0).

Khi đó P = ĐOx(P).

Chọn M(1; –2) ∈ ∆.

Gọi M1 và ∆1 theo thứ tự là ảnh của M và ∆ qua ĐOx.

Ta thấy Ox là đường trung trực của đoạn MM1.

Do đó hai điểm M(1; –2) và M1 có cùng hoành độ và có tung độ đối nhau.

Vì vậy tọa độ M1(1; 2).

Ta có M1P=3;2.

Đường thẳng ∆1 có vectơ chỉ phương M1P=3;2.

Suy ra ∆1 có vectơ pháp tuyến nΔ1=2;3.

Vậy đường thẳng ∆1 đi qua P(–2; 0) và có vectơ pháp tuyến nΔ1=2;3 nên có phương trình là:

2(x + 2) – 3(y – 0) = 0 hay 2x – 3y + 4 = 0.

b)

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 3)^2 + (y – 4)^2 = 25 và đường thẳng ∆: 2x + 3y + 4 = 0. a) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Ox. b) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Oy. c) Tìm ảnh của (C) và ∆ qua phép đối xứng trục d: x – y – 3 = 0. (ảnh 2)

⦁ Gọi (C2) là ảnh của (C) qua ĐOy, khi đó (C2) có tâm I2 là ảnh của I(3; 4) qua ĐOy và bán kính R2 = R = 5.

Ta có I2 = ĐOy(I).

Suy ra Oy là đường trung trực của đoạn II2.

Do đó hai điểm I(3; 4) và I2 có cùng tung độ và có hoành độ đối nhau.

Vì vậy tọa độ I2(–3; 4).

Vậy ảnh của đường tròn (C) qua ĐOy là đường tròn (C2) có phương trình là:

(x + 3)2 + (y – 4)2 = 25.

⦁ Trục Oy: x = 0.

Với x = 0, ta có 2.0 + 3y + 4 = 0 ⇔ y=43.

Suy ra giao điểm của ∆ và trục Oy là điểm Q0;43.

Khi đó Q = ĐOy(Q).

Chọn M(1; –2) ∈ ∆.

Gọi M2 và ∆2 theo thứ tự là ảnh của M và ∆ qua ĐOy.

Ta thấy Oy là đường trung trực của đoạn MM2.

Do đó hai điểm M(1; –2) và M2 có cùng tung độ và có hoành độ đối nhau.

Vì vậy tọa độ M2(–1; –2).

Ta có M2Q=1;23.

Đường thẳng ∆2 có vectơ chỉ phương u2=3M2Q=3;2.

Suy ra ∆2 có vectơ pháp tuyến nΔ2=2;3.

Vậy đường thẳng ∆2 đi qua M2(–1; –2) và có vectơ pháp tuyến nΔ2=2;3 nên có phương trình là:

2(x + 1) – 3(y + 2) = 0 hay 2x – 3y – 4 = 0.

c)

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 3)^2 + (y – 4)^2 = 25 và đường thẳng ∆: 2x + 3y + 4 = 0. a) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Ox. b) Tìm ảnh của (C) và ∆ qua phép đối xứng trục Oy. c) Tìm ảnh của (C) và ∆ qua phép đối xứng trục d: x – y – 3 = 0. (ảnh 3)

⦁ Gọi (C3) là ảnh của (C) qua Đd, khi đó (C2) có tâm I3 là ảnh của I(3; 4) qua Đd và bán kính R3 = R = 5.

Ta có I3 = Đd(I).

Suy ra d là đường trung trực của đoạn II3 nên II3 ⊥ d tại trung điểm của II3.

Mà đường thẳng d: x – y – 3 = 0 có vectơ pháp tuyến nd=1;1.

Suy ra đường thẳng II3 có vectơ chỉ phương nd=1;1.

Do đó đường thẳng II3 có vectơ pháp tuyến u=1;1.

Vì vậy đường thẳng II3 đi qua điểm I(3; 4) và nhận u=1;1 làm vectơ pháp tuyến nên có phương trình là:

1(x – 3) + 1(y – 4) = 0 ⇔ x + y – 7 = 0.

Gọi H là giao điểm của II3 và đường thẳng d.

Suy ra tọa độ H thỏa mãn hệ phương trình xy3=0x+y7=0x=5y=2

Do đó tọa độ H(5; 2).

Ta có H là trung điểm II3.

Suy ra x+y+2=0xy3=0x=12y=52

Do đó tọa độ I3(7; 0).

Vậy ảnh của đường tròn (C) qua Đd là đường tròn (C3) có phương trình là:

(x – 7)2 + y2 = 25.

⦁ Gọi R là giao điểm của ∆ và d.

Suy ra tọa độ R thỏa mãn hệ phương trình: xI3=2xHxI=2.53=7yI3=2yHyI=2.24=0

Do đó tọa độ R(1; –2).

Khi đó R = Đd(R).

Chọn N(–2; 0) ∈ ∆: 2x + 3y + 4 = 0.

Gọi N’ và ∆3 theo thứ tự là ảnh của N và ∆ qua Đd.

Ta thấy d là đường trung trực của đoạn NN’.

Mà đường thẳng d: x – y – 3 = 0 có vectơ pháp tuyến nd=1;1.

Suy ra đường thẳng NN’ có vectơ chỉ phương nd=1;1.

Do đó đường thẳng NN’ có vectơ pháp tuyến u=1;1.

Vì vậy đường thẳng NN’ đi qua N(–2; 0) và nhận u=1;1 làm vectơ pháp tuyến nên có phương trình là:

1(x + 2) + 1(y – 0) = 0 ⇔ x + y + 2 = 0.

Gọi K là giao điểm của NN’ và đường thẳng d.

Suy ra tọa độ K thỏa mãn hệ phương trình: x+y+2=0xy3=0x=12y=52

Do đó tọa độ K12;52.

Ta có K là trung điểm NN’.

Suy ra xN'=2xKxN=2.12+2=3yN'=2yKyN=2.520=5

Do đó tọa độ N’(3; –5).

Với R(1; –2), ta có N'R=2;3.

Đường thẳng ∆3 có vectơ chỉ phương N'R=2;3.

Suy ra ∆3 có vectơ pháp tuyến nΔ3=3;2.

Vậy đường thẳng ∆3 đi qua N’(3; –5) và nhận nΔ3=3;2 làm vectơ pháp tuyến nên có phương trình là:

3(x – 3) + 2(y + 5) = 0 hay 3x + 2y + 1 = 0.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP