Câu hỏi:

12/07/2024 1,559

Các phép biến hình sau có phải là phép vị tự không: phép đối xứng tâm, phép đối xứng trục, phép đồng nhất, phép tịnh tiến theo vectơ khác 0?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

⦁ Phép đối xứng tâm là phép vị tự tâm O, tỉ số k = –1.

⦁ Xét phép đối xứng trục:

Giả sử ta chọn đường thẳng d bất kì.

Các phép biến hình sau có phải là phép vị tự không: phép đối xứng tâm, phép đối xứng trục, phép đồng nhất, phép tịnh tiến theo vectơ khác  ? (ảnh 1)

Với mỗi điểm M ∉ d, ta có M’ là ảnh của M qua phép đối xứng trục d.

Do đó d là đường trung trực của MM’.

Suy ra d ⊥ MM’   (1)

Với mỗi điểm N ∉ d và N ≠ M, ta cũng có N’ là ảnh của N qua phép đối xứng trục d.

Do đó d là đường trung trực của NN’.

Suy ra d ⊥ NN’    (2)

Từ (1), (2), ta suy ra MM’ // NN’ hay MM’ và NN’ không có điểm chung.

Do đó phép đối xứng trục không phải là phép vị tự.

⦁ Phép đồng nhất là phép vị tự tâm I, tỉ số k = 1, với I là một điểm bất kì.

⦁ Xét phép tịnh tiến:

Giả sử ta chọn u0.

Các phép biến hình sau có phải là phép vị tự không: phép đối xứng tâm, phép đối xứng trục, phép đồng nhất, phép tịnh tiến theo vectơ khác  ? (ảnh 2)

Ta có phép tịnh tiến theo u0 biến điểm A thành điểm A’.

Tức là, AA'=u.

Tương tự như vậy, với mỗi điểm M bất kì và điểm M’ là ảnh của M qua phép tịnh tiến theo u0, ta đều có MM'=u.

Ta thấy tồn tại ít nhất một cặp AA',  MM' không có điểm chung.

Tức là, tồn tại ít nhất một cặp đường thẳng AA’ và MM’ song song với nhau.

Do đó phép tịnh tiến không phải là phép vị tự.

Vậy phép đối xứng tâm và phép đồng nhất là phép vị tự; phép đối xứng trục và phép tịnh tiến không phải là phép vị tự.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC có G, H, O lần lượt là trọng tâm, trực tâm, tâm đường tròn ngoại tiếp tam giác. Gọi A’, B’, C’ lần lượt là trung điểm các cạnh BC, CA, AB. a) Tìm phép vị tự biến tam giác ABC thành tam giác A’B’C’. b) Chứng minh ba điểm H, G, O thẳng hàng. (ảnh 1)

a) Để tìm phép vị tự biến ∆ABC thành ∆A’B’C’, ta tìm phép vị tự biến điểm A thành điểm A’, biến điểm B thành điểm B’, biến điểm C thành điểm C’.

∆ABC có A’ là trung điểm BC và G là trọng tâm.

Theo tính chất trọng tâm của tam giác, ta có AG=2GA' hay GA'=12GA.

Suy ra A’ là ảnh của A qua VG,12.

Chứng minh tương tự, ta được VG,12B=B' và VG,12C=C'.

Vậy VG,12 biến ∆ABC thành ∆A’B’C’.

b) Gọi AD là đường kính của đường tròn tâm O ngoại tiếp ∆ABC.

Suy ra ABD^=90° và O là trung điểm của AD.

Do đó AB ⊥ BD.

Mà CH ⊥ AB (do H là trực tâm của ∆ABC).

Vì vậy BD // CH.

Chứng minh tương tự, ta được BH // CD.

Suy ra tứ giác BHCD là hình bình hành.

Mà A’ là trung điểm BC (giả thiết).

Do đó A’ cũng là trung điểm của DH.

∆ADH có A’O là đường trung bình của tam giác nên A'O=12HA và A’O // HA.

Suy ra A'O=12HA=12AH.

Ta có GO=GA'+A'O=12GA12AH

=12GA+AH=12GH.

Khi đó GO và GH cùng phương nên ba điểm G, H, O thẳng hàng.

Vậy ba điểm G, H, O thẳng hàng.

Lời giải

Đường tròn (C): x2 + y2 + 4x – 2y – 4 = 0 có tâm A(–2; 1) và bán kính R=22+124=3.

a) Gọi đường tròn (C’) là ảnh của đường tròn (C) qua V(O, 2)

Khi đó (C’) có tâm ảnh của A qua V(O, 2) và bán kính R’ = |2|.R = 2.3 = 6.

Gọi A’(x’; y’) là ảnh của A qua V(O, 2).

Suy ra OA'=2OA với OA=2;1 và OA'=x';y'     

Do đó x'=2.2=4y'=2.1=2                            

Vì vậy A’(–4; 2).

Vậy phương trình đường tròn (C’) là: (x + 4)2 + (y – 2)2 = 36.

b) Gọi đường tròn (C’’) là ảnh của đường tròn (C) qua V(I, –2).

Khi đó (C’’') có tâm ảnh của A qua V(I, –2) và bán kính R’’ = |–2|.R = 2.3 = 6.

Gọi A”(x”; y”) là ảnh của A qua V(I, –2).

Suy ra IA'=2IA với IA'=x''1;y''1 và IA=3;0

Do đó x''1=2.3y''1=2.0

Vì vậy x''=7y''=1

Suy ra tọa độ A”(7; 1).

Vậy phương trình đường tròn (C”) là: (x – 7)2 + (y – 1)2 = 36.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP