Chuyên đề Toán 11 CTST Bài 6. Phép vị tự có đáp án
33 người thi tuần này 4.6 3 K lượt thi 17 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
⦁ Những hình như vậy có cùng hình dạng nhưng khác kích thước.
⦁ Ta xét cụ thể một hình là hình hai con mèo:

• Giả sử O là điểm cố định trên hình hai con mèo, M là một điểm trên hình con mèo 1 (như hình vẽ).
Lấy điểm M’ là điểm sao cho (k > 0), khi đó điểm M’ có vị trí trên hình con mèo 2 tương ứng với điểm M trên hình con mèo 1.
Lấy điểm A’ sao cho , với k > 0, ta được điểm A’ có vị trí trên hình con mèo 2 tương ứng với điểm A trên hình con mèo 1.
Tương tự như vậy, với mỗi điểm B bất kì trên hình con mèo 1, ta lấy điểm B’ sao cho (k > 0) thì ta được tập hợp các điểm B’ tạo thành hình con mèo 2.
Vì vậy phép biến hình biến hình con mèo 1 thành hình con mèo 2 là phép biến hình biến mỗi điểm N bất kì thành điểm N’ sao cho .
• Chứng minh tương tự với các hình ảnh khác, ta cũng được kết quả như trên.
Vậy phép biến hình cần tìm là phép biến hình biến mỗi điểm M bất kì trên hình kia thành điểm M’ trên hình này sao cho , với O là điểm cố định và k là một số thực, k ≠ 0.
Lời giải
Ta có .
⦁ Gọi M1(x1; y1), ta có .
Theo đề, ta có V(O, 3)(M) = M1.
Suy ra .
Do đó
Vì vậy tọa độ M1(9; 27).
⦁ Gọi M2(x2; y2), ta có .
Theo đề, ta có V(O, –2)(M) = M2.
Suy ra .
Do đó
Vì vậy tọa độ M2(–6; –18).
Vậy M1(9; 27) và M2(–6; –18).
Lời giải
a) Do ba điểm O, D, D’ thẳng hàng (giả thiết), suy ra .
Do đó V(O, k)(D) = D’ và OD’ = |k|.OD.
Vì D, D’ nằm cùng phía đối với O nên k > 0.
Suy ra .
Ta có AB // BD’ (do ABCD là hình bình hành) và ba điểm O, D, D’ thẳng hàng (giả thiết).
Khi đó áp dụng định lí Thales, ta được .
Vậy phép vị tự cần tìm là .
b) Từ câu a, ta có (k > 0).
Suy ra .
Khi đó .
Ta có .
Vậy phép vị tự cần tìm là .
Lời giải
Ta có
.
Vậy .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
599 Đánh giá
50%
40%
0%
0%
0%