Giải SBT Toán học 11 CTST Bài 2: Đường thẳng vuông góc với mặt phẳng có đáp án
27 người thi tuần này 4.6 390 lượt thi 4 câu hỏi
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
184 câu Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác có đáp án (Mới nhất)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
299 câu trắc nghiệm Tổ hợp xác suất từ đề thi đại học có lời giải chi tiết(P1)
Bài tập Lượng Giác cơ bản , nâng cao có lời giải (P1)
24 câu Trắc nghiệm Ôn tập Toán 11 Chương 2 Hình học có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

a) Từ giả thiết, dễ dàng nhận thấy ∆SAC và ∆SBD là các tam giác cân.
Ta có:
Do đó SO ⊥ (ABCD)
b) Ta có: AC = 2a, OC = a,
Vẽ đường cao AH của ∆SAC.
Ta có:
Vậy độ dài đường cao xuất phát từ đỉnh A của tam giác SAC bằng .
Lời giải

Theo giả thiết:
Suy ra CD ⊥ AHB
Do đó CD ⊥ BH (1)
Chứng minh tương tự: CH ⊥ BD (2)
Từ (1) và (2) suy ra H là trực tâm của ∆BCD.
Do đó DH ^ BC.
Lại có AH ^ BC suy ra BC ⊥ (AHD).
Vậy H là trực tâm của ∆BCD và AD ^ BC.
Lời giải

a) Tam giác ABC cân tại A Þ Trung tuyến AM ^ BC.
Lại có DA ^ (ABC) Þ DA ^ BC.
Þ BC ^ (ADM) Û BC ^ AH. (1)
Theo giả thiết: AH ^ DM. (2)
Từ (1) và (2) suy ra AH ^ (BCD).
b) Ta có: nên GK // AD (theo định lí Thalès.
Ta lại có AD ^ (ABC) suy ra GK ^ (ABC).
Lời giải

a) Từ giả thiết, dễ dàng nhận thấy ∆SAC và ∆SBD là các tam giác cân.
Ta có:
Do đó SO ^ (ABCD)
b) Ta có AC ^ BD và AC ^ SO, suy ra AC ^ (SBD).
IJ là đường trung bình của ∆ABC nên IJ // AC.
Do đó IJ ^ (SBD).
c) Ta có BD ^ AC (ABCD là hình thoi) và BD ^ SO, suy ra BD ^ (SAC).