Giải SBT Toán học 11 CTST Bài 2: Đường thẳng vuông góc với mặt phẳng có đáp án
32 người thi tuần này 4.6 311 lượt thi 4 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
33 câu trắc nghiệm Toán 11 Kết nối tri thức Bài 29: Công thức cộng xác suất có đáp án
10 Bài tập Biểu diễn góc lượng giác trên đường tròn lượng giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Từ giả thiết, dễ dàng nhận thấy ∆SAC và ∆SBD là các tam giác cân.
Ta có:
Do đó SO ⊥ (ABCD)
b) Ta có: AC = 2a, OC = a,
Vẽ đường cao AH của ∆SAC.
Ta có:
Vậy độ dài đường cao xuất phát từ đỉnh A của tam giác SAC bằng .
Lời giải
Theo giả thiết:
Suy ra CD ⊥ AHB
Do đó CD ⊥ BH (1)
Chứng minh tương tự: CH ⊥ BD (2)
Từ (1) và (2) suy ra H là trực tâm của ∆BCD.
Do đó DH ^ BC.
Lại có AH ^ BC suy ra BC ⊥ (AHD).
Vậy H là trực tâm của ∆BCD và AD ^ BC.
Lời giải
a) Tam giác ABC cân tại A Þ Trung tuyến AM ^ BC.
Lại có DA ^ (ABC) Þ DA ^ BC.
Þ BC ^ (ADM) Û BC ^ AH. (1)
Theo giả thiết: AH ^ DM. (2)
Từ (1) và (2) suy ra AH ^ (BCD).
b) Ta có: nên GK // AD (theo định lí Thalès.
Ta lại có AD ^ (ABC) suy ra GK ^ (ABC).
Lời giải
a) Từ giả thiết, dễ dàng nhận thấy ∆SAC và ∆SBD là các tam giác cân.
Ta có:
Do đó SO ^ (ABCD)
b) Ta có AC ^ BD và AC ^ SO, suy ra AC ^ (SBD).
IJ là đường trung bình của ∆ABC nên IJ // AC.
Do đó IJ ^ (SBD).
c) Ta có BD ^ AC (ABCD là hình thoi) và BD ^ SO, suy ra BD ^ (SAC).