Giải SBT Toán học 11 CTST Bài 5: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện có đáp án
26 người thi tuần này 4.6 373 lượt thi 4 câu hỏi
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
29 câu Trắc nghiệm Đại số và Giải tích 11 Bài 1 (Có đáp án): Hàm số lượng giác
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
299 câu trắc nghiệm Tổ hợp xác suất từ đề thi đại học có lời giải chi tiết(P1)
Bài tập Lượng Giác cơ bản , nâng cao có lời giải (P1)
24 câu Trắc nghiệm Ôn tập Toán 11 Chương 2 Hình học có đáp án
184 câu Trắc nghiệm Toán 11 Bài 1: Hàm số lượng giác có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

a) Ta có:
Suy raAB là hình chiếu của SB trên (ABCD).
Do đó (SB, (ABCD)) = (SB, AB).
Trong tam giác SAB vuông tại A, ta có:
Vậy
b) Tương tự câu a) ta xác định được (SC, (ABCD)) = (SC, AC).
Trong tam giác SAC vuông tại A, ta có:
Vậy
c) Tương tự câu a) ta xác định được (SD, (ABCD)) = (SD,AD).
Trong tam giác SAD vuông tại A, ta có:
Vậy
d) Ta có:
Þ BD ^ (SAC) hay BO ^ (SAC). (1)
Mà SB Ç (SAC) = S. (2)
Từ (1) và (2) suy ra SO là hình chiếu của SB trên (SAC).
Do đó: (SB, (SAC)) = (SB, SO).
Trong tam giác SBO vuông tại O, ta có:
Vậy
Lời giải

a) Vì AI là hình chiếu của SA trên (ABC).
Do đó (SA, (ABC)) = (SA, AI).
Vì tam giác SAI vuông cân tại I
Vậy
b) Ta có tam giác ABC đều nên CI ^ AB,
Ta có:
Mà SC Ç (SAB) = S. (2)
Từ (1) và (2) Þ SI là hình chiếu của SC trên (SAB).
Do đó (SC, (SAB)) = (SC, SI).
Trong tam giác SAB vuông tại S,
Trong tam giác SCI vuông tại I, ta có
Vậy
Lời giải

Gọi M là trung điểm BC, G là trọng tâm tam giác ABC.
Ta có SG ^ (ABC), SM ^ BC, AM ^ BC.
Suy ra là góc phẳng nhị diện [S, BC, A].
Ta tính được
Þ GM = SG.
Ta có tam giác SMG vuông cân tại G, suy ra số đo góc phẳng nhị diện [S, BC, A] =
Lời giải

Vẽ AH ^ BC (H Î BC), ta có SH ^ BC.
Suy ra là góc phẳng nhị diện [S, BC, A].
Ta có AH = AC.sin60° = = SA
Do đó = 45°.