Giải SBT Toán 11 CTST Bài 4. Hai mặt phẳng song song có đáp án

38 người thi tuần này 4.6 1 K lượt thi 9 câu hỏi

🔥 Đề thi HOT:

1296 người thi tuần này

Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)

26.9 K lượt thi 30 câu hỏi
646 người thi tuần này

10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)

3.7 K lượt thi 10 câu hỏi
515 người thi tuần này

Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)

12.8 K lượt thi 25 câu hỏi
379 người thi tuần này

15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)

4.2 K lượt thi 15 câu hỏi
331 người thi tuần này

10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)

1.5 K lượt thi 10 câu hỏi
316 người thi tuần này

23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)

6.7 K lượt thi 23 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD // BC, AD = 2BC. Gọi E, F, I lần lượt là trung điểm của các cạnh SA, AD, SD. a) Chứng minh: (BEF) // (SCD) và CI // (BEF). (ảnh 1)

a) • Xét ∆SAD có E, F lần lượt là trung điểm của các cạnh SA, AD nên EF là đường trung bình của tam giác SAD, suy ra EF // SD.

Mà SD (SCD), suy ra EF // (SCD).

Ta có F là trung điểm của AD nên  AF=FD=12AD,

Mà AD = 2BC hay  BC=12AD nên BC = AF = FD.

Lại có BC // AD hay BC // FD

Do đó tứ giác BFDC là hình bình hành nên BF // CD

CD (SCD)

Suy ra BF // (SCD).

Ta có: EF // (SCD);

           BF // (SCD);

           EF ∩ BF = F trong (BEF).

Suy ra (BEF) // (SCD).

Xét ∆SAD có: E, I lần lượt là trung điểm của SA, SD

Suy ra EI là đường trung bình của ∆SAD, do đó EI // AD và EI=12AD

Mà AD // BC và BC=12AD

Suy ra EI // BC  EI=BC=12AD

Do đó tứ giác EICB là hình bình hành nên CI // BE.

Mặt khác BE (BEF), suy ra CI // (BEF).

Lời giải

b) Ta có BC // AD, BC (SBC) và AD (SAD)

Suy ra giao tuyến của (SBC)(SAD) là đường thẳng d đi qua S d // BC // AD.

Lời giải

c) Do d (SAD) và FI (SAD) nên trong mặt phẳng (SAD), ta có d ∩ FI = K.

Xét ∆SADI là trung điểm của SD, F là trung điểm của AD.

Suy ra IF là đường trung bình của ∆SAD, suy ra IF // SA hay KF // SA (1)

Mặt khác, SK // AF (2).

Từ (1) và (2) suy ra SKFA là hình bình hành, do đó SK = AF.

Suy ra SK = FD (vì AF = FD).

Tứ giác SKDFSK = FDSK // FD, nên SKDF là hình bình hành.

Suy ra SF // KD.

Ta có SF // KD và KD (KCD) nên SF // (KCD).

          BF // DC và DC (KCD) nên BF // (KCD).

Lại có, trong (SBF) thì SF ∩ BF = F

Suy ra (SBF) // (KCD).

Lời giải

Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và CD. a) Chứng minh (OMN) // (SBC). (ảnh 1)

a) • Xét ∆SAC có: M, O lần lượt là trung điểm của SA, AC nên MO là đường trung bình của tam giác SAC, suy ra MO // SC.

Mà SC (SCB), suy ra MO // (SCB).

• Xét ∆DCB có: N, O lần lượt là trung điểm của CD, BD nên NO là đường trung bình của tam giác DCB, suy ra NO // BC

Mà BC (SBC), suy ra NO // (SCB).

Ta có: MO // (SCB);

           NO // (SCB);

           MO, NO (OMN); MO ∩ NO = O.

Vậy (OMN) // (SBC).

Lời giải

b) Ta có hai tam giác SADSAB là các tam giác cân tại A, suy ra AEAF vừa là

phân giác vừa là đường trung tuyến lần lượt của hai tam giác SADSAB, suy ra E F lần lượt là trung điểm của SDSB.

Suy ra EF là đường trung bình của tam giác SDB nên EF // BD

Mà BD (SBD)

Suy ra EF // (SBD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

196 Đánh giá

50%

40%

0%

0%

0%