Giải SBT Toán 11 CTST Bài 4. Hai mặt phẳng song song có đáp án
38 người thi tuần này 4.6 1 K lượt thi 9 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

a) • Xét ∆SAD có E, F lần lượt là trung điểm của các cạnh SA, AD nên EF là đường trung bình của tam giác SAD, suy ra EF // SD.
Mà SD ⊂ (SCD), suy ra EF // (SCD).
Ta có F là trung điểm của AD nên
Mà AD = 2BC hay nên BC = AF = FD.
Lại có BC // AD hay BC // FD
Do đó tứ giác BFDC là hình bình hành nên BF // CD
Mà CD ⊂ (SCD)
Suy ra BF // (SCD).
Ta có: EF // (SCD);
BF // (SCD);
EF ∩ BF = F trong (BEF).
Suy ra (BEF) // (SCD).
• Xét ∆SAD có: E, I lần lượt là trung điểm của SA, SD
Suy ra EI là đường trung bình của ∆SAD, do đó EI // AD và
Mà AD // BC và
Suy ra EI // BC và
Do đó tứ giác EICB là hình bình hành nên CI // BE.
Mặt khác BE ⊂ (BEF), suy ra CI // (BEF).
Lời giải
b) Ta có BC // AD, BC ⊂ (SBC) và AD ⊂ (SAD)
Suy ra giao tuyến của (SBC) và (SAD) là đường thẳng d đi qua S và d // BC // AD.
Lời giải
c) Do d ⊂ (SAD) và FI ⊂ (SAD) nên trong mặt phẳng (SAD), ta có d ∩ FI = K.
Xét ∆SAD có I là trung điểm của SD, F là trung điểm của AD.
Suy ra IF là đường trung bình của ∆SAD, suy ra IF // SA hay KF // SA (1)
Mặt khác, SK // AF (2).
Từ (1) và (2) suy ra SKFA là hình bình hành, do đó SK = AF.
Suy ra SK = FD (vì AF = FD).
Tứ giác SKDF có SK = FD và SK // FD, nên SKDF là hình bình hành.
Suy ra SF // KD.
Ta có SF // KD và KD ⊂ (KCD) nên SF // (KCD).
BF // DC và DC ⊂ (KCD) nên BF // (KCD).
Lại có, trong (SBF) thì SF ∩ BF = F
Suy ra (SBF) // (KCD).
Lời giải

a) • Xét ∆SAC có: M, O lần lượt là trung điểm của SA, AC nên MO là đường trung bình của tam giác SAC, suy ra MO // SC.
Mà SC ⊂ (SCB), suy ra MO // (SCB).
• Xét ∆DCB có: N, O lần lượt là trung điểm của CD, BD nên NO là đường trung bình của tam giác DCB, suy ra NO // BC
Mà BC ⊂ (SBC), suy ra NO // (SCB).
Ta có: MO // (SCB);
NO // (SCB);
MO, NO ⊂ (OMN); MO ∩ NO = O.
Vậy (OMN) // (SBC).
Lời giải
b) Ta có hai tam giác SAD và SAB là các tam giác cân tại A, suy ra AE và AF vừa là
phân giác vừa là đường trung tuyến lần lượt của hai tam giác SAD và SAB, suy ra E và F lần lượt là trung điểm của SD và SB.
Suy ra EF là đường trung bình của tam giác SDB nên EF // BD
Mà BD ⊂ (SBD)
Suy ra EF // (SBD).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
196 Đánh giá
50%
40%
0%
0%
0%