Giải SBT Toán 11 CTST Bài 3. Đường thẳng và mặt phẳng song song có đáp án
48 người thi tuần này 4.6 350 lượt thi 5 câu hỏi
🔥 Đề thi HOT:
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

Gọi M, N lần lượt là trung điểm của DB, DC.
Xét ∆DBC có M, N lần lượt là trung điểm của DB, DC nên MN là đường trung bình của ∆DBC, suy ra MN // BC.
Do G1 là trọng tâm ∆ABD nên
G2 là trọng tâm ∆ACD nên
Do đó
Trong tam giác AMN, ta có nên G1G2 // MN (định lí Thalès đảo)
Mà MN // BC (chứng minh trên)
Suy ra G1G2 // MN // BC, mà BC ⊂ (ABC), MN ⊂ (BCD).
Suy ra G1G2 song song với các mặt phẳng (ABC) và (BCD).
Lời giải

a) Do O, O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O là trung điểm của BD, AC và O’ là trung điểm của BF, AE.
Xét trong ∆BDF có: O, O’ lần lượt là trung điểm của BD, BF nên OO’ là đường trung bình của ∆BDF, suy ra OO’ // DF (1)
Tương tự, trong ∆ACE ta cũng có OO’ // CE (2)
Từ (1) và (2) suy ra OO’ // DF // CE, mà DF ⊂ (ADF), CE ⊂ (BCE)
Suy ra OO’ song song với các mặt phẳng (ADF) và (BCE).
b) Do nên
Xét ∆ADF có suy ra MN // DF (định lý Thalès đảo)
Mà DF ⊂ (DCEF), suy ra MN // (DCEF).
Lời giải

a) Hình bình hành ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD nên MN // AD // BC
Ta có MN // BC và BC ⊂ (SBC), suy ra MN // (SBC);
MN // AD và AD ⊂ (SAD), suy ra MN // (SAD).
Vậy MN song song với các mặt phẳng (SBC) và (SAD).
b) Trong ∆SAB, có P, M lần lượt là trung điểm của SA, AB nên PM là đường trung bình, suy ra PM // SB
Mà PM ⊂ (MNP), suy ra SB // (MNP).
c) Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và song song AB.
Gọi E là giao điểm của MP và d.
Ta có d // AB hay ES // AB, mà AB // CD nên ES // DC, tức là ES // NC (1)
Ta cũng có ES // MB và EM // SB nên MBSE là hình bình hành, suy ra ES = MB
Mà MB = NC (do M, N lần lượt là trung điểm của AB, DC và AB = DC)
Suy ra ES = NC (2)
Từ (1) và (2) suy ra ESCN là hình bình hành nên SC // NE.
Lại có NE ⊂ (MNP), suy ra SC // (MNP).
d) Gọi I là trung điểm của BC.
Do G1 và G2 theo thứ tự là trọng tâm của ∆ABC và ∆SBC nên
Trong ∆SIA, ta có suy ra G1G2 // SA (định lí Thalès đảo)
Mà SA ⊂ (SAD), nên G1G2 // (SAD).
Lời giải

Gọi N, P, R lần lượt là trung điểm của AD, SD, SB.
Xét ∆ABD có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác. Do đó MN // BD.
Ta có MN // BD và MN ⊂ (MNPR) nên BD // (MNPR)
Tương tự, ta cũng có SA // (MNPR)
Ta thấy (MNPR) đi qua M và song song với BD, và SA nên chính là mp(α).
Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và d // AB // CD.
Khi đó, giả sử MR cắt d tại I, PI cắt SC tại Q.
Lúc này, mặt phẳng (α) là (MNPI).
Ta có MN ⊂ (ABCD), MN ⊂ (MNPI) nên (MNPI) ∩ (ABCD) = MN hay (α) ∩ (ABCD) = MN.
Tương tự, (α) ∩ (SAD) = NP, (α) ∩ (SCD) = PQ, (α) ∩ (SBC) = QR, (α) ∩ (SAB) = MR.
70 Đánh giá
50%
40%
0%
0%
0%