Câu hỏi:

11/07/2024 11,920 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của hai cạnh ABCD, P là trung điểm của SA. Chứng minh:

a) MN song song với các mặt phẳng (SBC)(SAD);

b) SB song song với (MNP);

c) SC song song với (MNP).

d) Gọi G1G2 theo thứ tự là trọng tâm của hai tam giác ABCSBC. Chứng minh G1G2 song song với (SAD).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của hai cạnh AB và CD, P là trung điểm của SA. Chứng minh: a) MN song song với các mặt phẳng (SBC) và (SAD); b) SB song song với (MNP); c) SC song song với (MNP). d) Gọi G1 và G2 theo thứ tự là trọng tâm của hai tam giác ABC và SBC. Chứng minh G1G2 song song với (SAD). (ảnh 1)

a) Hình bình hành ABCD có M, N lần lượt là trung điểm của hai cạnh ABCD nên MN // AD // BC

Ta có MN // BC và BC (SBC), suy ra MN // (SBC);

          MN // AD và AD (SAD), suy ra MN // (SAD).

Vậy MN song song với các mặt phẳng (SBC)(SAD).

b) Trong ∆SAB, có P, M lần lượt là trung điểm của SA, AB nên PM là đường trung bình, suy ra PM // SB

Mà PM (MNP), suy ra SB // (MNP).

c) Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua Ssong song AB.

Gọi E là giao điểm của MPd.

Ta có d // AB hay ES // AB, mà AB // CD nên ES // DC, tức là ES // NC (1)

Ta cũng có ES // MB và EM // SB nên MBSE là hình bình hành, suy ra ES = MB

Mà MB = NC (do M, N lần lượt là trung điểm của AB, DC và AB = DC)

Suy ra ES = NC (2)

Từ (1) và (2) suy ra ESCN là hình bình hành nên SC // NE.

Lại có NE (MNP), suy ra SC // (MNP).

d) Gọi I là trung điểm của BC.

Do G1G2 theo thứ tự là trọng tâm của ∆ABC và ∆SBC nên IG1IA=IG2IS=13

Trong ∆SIA, ta có IG1IA=IG2IS=13,  suy ra G1G2 // SA (định lí Thalès đảo)

Mà SA (SAD), nên G1G2 // (SAD).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (α) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA. Tìm giao tuyến của mặt phẳng (α) với các mặt của hình chóp. (ảnh 1)

Gọi N, P, R lần lượt là trung điểm của AD, SD, SB.

Xét ∆ABD có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác. Do đó MN // BD.

Ta có MN // BD và MN (MNPR) nên BD // (MNPR)

Tương tự, ta cũng có SA // (MNPR)

Ta thấy (MNPR) đi qua M và song song với BD, và SA nên chính là mp(α).

Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua Sd // AB // CD.

Khi đó, giả sử MR cắt d tại I, PI cắt SC tại Q.

Lúc này, mặt phẳng (α) là (MNPI).

Ta có MN (ABCD), MN (MNPI) nên (MNPI) ∩ (ABCD) = MN hay (α) ∩ (ABCD) = MN.

Tương tự, (α) ∩ (SAD) = NP, (α) ∩ (SCD) = PQ, (α) ∩ (SBC) = QR, (α) ∩ (SAB) = MR.

Lời giải

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng có tâm lần lượt là O và O’. a) Chứng minh OO’ song song với các (ảnh 1)

a) Do O, O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O là trung điểm của BD, AC và O’ là trung điểm của BF, AE.

Xét trong ∆BDF có: O, O’ lần lượt là trung điểm của BD, BF nên OO’ là đường trung bình của ∆BDF, suy ra OO’ // DF (1)

Tương tự, trong ∆ACE ta cũng có OO’ // CE (2)

Từ (1) và (2) suy ra OO’ // DF // CE, mà DF (ADF), CE (BCE)

Suy ra OO’ song song với các mặt phẳng (ADF)(BCE).

b) Do  AM=13AF,  AN=13ADnên AMAF=ANAD=13

Xét ∆ADF có  AMAF=ANAD  suy ra MN // DF (định lý Thalès đảo)

Mà DF (DCEF), suy ra MN // (DCEF).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP